
Helium
A Decentralized Wireless Network

Amir Haleem Andrew Allen Andrew Thompson Marc Nijdam Rahul Garg
Helium Systems, Inc.

Release 0.4.2 (2018-11-14)

Abstract

The Internet of Things is an $800 billion industry, with over
8.4 billion connected devices online, and spending predicted
to reach nearly $1.4 trillion by 2021 [1]. Most of these
devices need to connect to the Internet to function. However,
current solutions such as cellular, WiFi, and Bluetooth are
suboptimal: they are too expensive, too power hungry, or too
limited in range.

The Helium network is a decentralized wireless network
that enables devices anywhere in the world to wirelessly
connect to the Internet and geolocate themselves without
the need for power-hungry satellite location hardware or
expensive cellular plans. Powering the Helium network is
a blockchain with a native protocol token incentivizing a two-
sided marketplace between coverage providers and coverage
consumers. With the introduction of a blockchain, we inject
decentralization into an industry currently controlled by
monopolies. The result is that wireless network coverage
becomes a commodity, fueled by competition, available
anywhere in the world, at a fraction of current costs.

Our secure and open-source primitives enable developers
to build low-power, Internet-connected devices quickly and
cost-effectively. The Helium network has a wide variety of
applications across industries and is the first decentralized
wireless network of its kind.

1. Introduction

The world is becoming decentralized. A multitude of plat-
forms, technologies, and services are moving from central-
ized proprietary systems to decentralized, open ones. Peer-
to-peer networks such as Napster (created by one of our
founders Shawn Fanning) [2] and BitTorrent paved the way
for blockchain networks and crypto-currencies to be built.
Now Bitcoin, Ethereum, and other blockchain networks have
shown the value of decentralized transaction ledgers. Exist-
ing Internet services such as file storage, identity verification,
and the domain name system are being replaced by modern
blockchain-based versions. While software-level decentraliza-
tion has moved quickly, physical networks are taking longer

to affect. These networks are more complicated to decentral-
ize as they often require specialized hardware to function.

The Helium network is a wide-area wireless networking sys-
tem, a blockchain, and a protocol token. The blockchain runs
on a new consensus protocol, called the Helium Consensus
Protocol, and a new kind of proof, called Proof-of-Coverage.
The Miners who are providing wireless network coverage in a
cryptographically verified physical location and time submit
proofs to the Helium network, and the Miners submitting the
best proofs are elected to an asynchronous byzantine fault tol-
erant consensus group at a fixed epoch. The members of the
consensus group receive encrypted transactions submitted by
other Miners and forms them into blocks at an extremely high
transaction rate. In addition to the blockchain protocol, the
Helium Wireless protocol, WHIP, provides a bi-directional
data transfer system between wireless Devices and the In-
ternet via a network of independent providers that does not
rely on a single coordinator, where: (1) Devices pay to send
& receive data to the Internet and geolocate themselves, (2)
Miners earn tokens for providing network coverage, and (3)
Miners earn fees from transactions, and for validating the
integrity of the Helium network.

Note: This whitepaper represents a continuous work in
progress. We will endeavor to keep this document current
with the latest development progress. As a result of the on-
going and iterative nature of our development process, the
resulting code and implementation is likely to differ from
what is represented in this paper.

We invite the interested reader to peruse our GitHub repo
at https://github.com/helium as we continue to open-
source various components of the system over time.

1.1 Key Components

The Helium network is built around the following key com-
ponents:

Proof-of-Coverage We present a computationally inexpen-
sive Proof-of-Coverage that allows Miners to prove they
are providing wireless network coverage. We anchor these
proofs using a Proof-of-Serialization that allows miners

1

https://github.com/helium

to prove they are accurately representing time relative to
others on the network in a cryptographically secure way.

Helium Network We demonstrate an entirely new purpose-
built blockchain network built to service WHIP and pro-
vide a system for authenticating and identifying devices,
providing cryptographic guarantees of data transmission
and authenticity, offer transaction primitives designed
around WHIP, and more.

Helium Consensus Protocol We present a novel consensus
protocol construction that creates a permissionless, high
throughput, censor-resistant system by combining an asyn-
chronous byzantine fault tolerant protocol with identities
presented via Proof-of-Coverage.

WHIP We introduce a new open-source and standards-
compliant wireless network protocol, called WHIP, de-
signed for low power Devices over vast areas. This pro-
tocol is designed to run on existing commodity radio
chips available from dozens of manufacturers with no
proprietary technologies or modulation schemes required.

Proof-of-Location We outline a system for interpreting the
physical geolocation of a Device using WHIP without the
need for expensive and power-hungry satellite location
hardware. Devices can make immutable, secure, and
verifiable claims about their location at a given moment
in time which is recorded in the blockchain.

DWN We present a decentralized wireless network (DWN)
that provides wireless access to the Internet for Devices
by way of multiple independent Miners and outlines the
Helium network and WHIP specification by which par-
ticipants in the Helium network should conform. Routers
pay this network of Miners for sending data to and from
the Internet, and Miners are rewarded with newly-minted
tokens for providing network coverage and delivering De-
vice data to the Internet.

1.2 System Overview

• The Helium network is a decentralized wireless network
built around WHIP on a purpose-built blockchain with a
native token.

• Devices take the form of hardware containing a radio chip
and firmware compatible with WHIP, and spend tokens
by paying Miners to send data to and from the Internet.

• Miners earn tokens by providing wireless network cover-
age via purpose-built hardware which provides a bridge
between WHIP and Routers, which are Internet applica-
tions.

• Devices store their private keys in commodity key-storage
hardware and their public keys in the blockchain.

• Miners join the network by asserting their satellite-derived
location, a special type of transaction in the blockchain,
and staking a token deposit.

• Miners specify the price they are willing to accept for
data transport and Proof-of-Location services, and Routers
specify the price they are willing to pay for their Device’s
data. Miners are paid once they prove they have delivered
data to the Device’s specified Router.

• Miners participate in the creation of new blocks in the
blockchain by being elected to an asynchronous byzantine
fault tolerant consensus group.

• Miners are rewarded with newly minted protocol tokens
for blocks that are created while they are part of the
consensus group.

• A Miner’s probability of being elected to the consensus
group at a given epoch is based on the quality of the
wireless network coverage they provide.

• The blockchain employs Proof-of-Coverage to guarantee
that Miners are honestly representing the wireless network
coverage they are creating.

[Figure 1] shows a visual representation of the Helium
network.

2. The Helium DWN

We introduce the core conmponents of the DWN.

2.1 Participants

There are three types of participants in the Helium network:
Device, Miner, or a Router.

Devices send and receive encrypted data from the Internet
using hardware compatible with WHIP [Section 2.4]. Data
sent from Devices is fingerprinted, and that fingerprint
stored in the blockchain.

Miners provide wireless network coverage to the Helium
network via purpose-built hardware, called Hotspots [Sec-
tion 2.5], which provide a long-range bridge between
WHIP devices and the Internet. Users join the Helium
network as Miners by purchasing or building a Hotspot
that conforms to WHIP, and staking a token deposit pro-
portional to the density of other Miners operating in their
area [Section 5.3.3]. Miners participate in the Proof-of-
Coverage [Section 3] process to prove that they are contin-
uously providing wireless network coverage that Device
can use. Miners join the Helium network with a score
[Section 3.3.4] that diminishes as blocks pass without
valid proofs being submitted. At a given epoch, a new
group of Miners are elected to a consensus group which
mine new blocks in the blockchain and receive the block

2

Gateway

Machine
Token Token

Coverage

GatewayGateway

GPS

Blockchain

Router

Router

Token Exchange

Peer-to-Peer

GPS/GNSS

Authentication

Figure 1. System Overview

reward and transaction fees for any transactions included
in the block once mined. As a Miner’s score drops their
probability of being elected to the consensus group and
mining blocks diminishes.

Routers are Internet applications that purchase encrypted
Device data from Miners. In locations with a sufficient
number of Miners, Routers can pay several Miners to
obtain enough copies of a packet to geolocate a Device
without needing satellite location hardware, which we call
Proof-of-Location. Routers are the termination point for
Device data encryption. Devices record to the blockchain
to which Routers a given Miner should send their data,
such that any Hotspot on the Helium network can send
any Device data to the appropriate Router. Routers are
responsible for confirming to Hotspots that Device data
was delivered to the correct destination and that the Miner
should be paid for their service.

2.2 Blockchain

The Helium network is a distributed ledger designed to pro-
vide a cost-effective way to run application logic core to the
operation of a DWN, store immutable Device data fingerprints,
and furnish a transaction system. The Helium network is an
immutable append-only list of transactions which achieves
consensus using the Helium Consensus Protocol [Section 6].
Users internal and external to the DWN have access to the
blockchain, which is a new protocol built from scratch specif-
ically for the DWN.

The blockchain consists of blocks which contain a header and
a list of transactions. There are several kinds of transactions,
outlined in [Section 5].

At a given epoch a given block consists of:

Block Version
Block Height

Previous Block Hash
Transactions 1..n Merkle Hash

Threshold signature by the current consensus group

As the Proof-of-Coverage [Section 3] is valuable to the net-
work, Miners are required to submit their proofs at regu-
lar intervals. All Miners have a score, which decays over
time, and is boosted by submitting Proofs-of-Coverage to
the blockchain. At a fixed epoch, a HoneyBadgerBFT [4]
consensus group of the highest scoring Miners is elected. For
that epoch, all transactions are encrypted and submitted to
the consensus group for inclusion in the blockchain. The con-
sensus group is responsible for decrypting transactions using
threshold decryption, agreeing on the validity and ordering of
transactions, forming them into blocks, and appending them
to the blockchain for which the members of the consensus
group receive a reward.

As the consensus group is validating transactions with-
out having to provide an associated block-proof (beyond
a threshold signature), there is practically no settlement time,
and the transaction throughput is extremely high compared
to a Nakamoto Consensus blockchain such as Bitcoin or

3

Ethereum. The Helium Consensus Protocol is outlined in
detail in [Section 6].

2.3 Physical Implementation

The Helium network is also a physical wireless network
instantiation. The participants in the Helium network can
be thought of as follows:

WHIP The Helium network uses a new open wireless pro-
tocol, called WHIP. WHIP is a long-range, low-power,
wireless network protocol suitable for use with commod-
ity open-standards hardware. WHIP compatible hardware
can communicate over many square miles in dense urban
environments or hundreds of square miles in rural settings.
WHIP compatible hardware can also last for several years
using standard batteries. WHIP uses strong public key
cryptography and authentication occurs using the Helium
blockchain, and data is encrypted end-to-end between the
device and corresponding Internet-hosted router.

Hotspots are physical network devices that provide wide-
area wireless coverage and participate in the Helium net-
work. Hotspots transmit data back and forth between
Routers on the Internet and Devices while generat-
ing Proofs-of-Coverage for the Helium network [Sec-
tion 3]. Hotspots are manufactured using commodity
open-standards components with no proprietary hardware.
Hotspots can co-operate and geolocate Devices using the
Helium network without any additional required hard-
ware. Each Hotspot can support thousands of connected
Devices, and provide coverage over many square miles.
Miners operating Hotspots specify the price they are will-
ing to accept for transport and Proof-of-Location services
for Devices.

Devices exist in the form of hardware products that contain
a WHIP-compatible radio transceiver and communicate
with Hotspots on the Helium network. WHIP is designed
to facilitate low power data transmission and reception, so
typically Devices exist in the form of battery-powered sen-
sors that can operate for several years using standard bat-
teries (although mains-powered Devices also work quite
well). Devices can exist in a variety of forms, depending
on the product or use case, and a variety of transmission
and reception strategies can be employed to optimize for
transmission/reception frequency or battery life. Device
manufacturers are encouraged to use hardware-based key
storage which can securely generate, store, and authenti-
cate public/private key pairs without leaking the private
key.

In this section, we expand on the components of the wireless
network.

2.4 Wireless Protocol (WHIP)

2.4.1 Motivation

Several Low Power Wide Area Network (LPWAN) technolo-
gies are available today. These wireless technologies focus
on creating long-range, low-power Internet communication
for sensors and other smart Devices. Typically these tech-
nologies trade throughput for range, with data rates as low
as 18 bits per second (bps) and range measured in miles.
In comparison, a typical WiFi network has significantly
higher data rates but ranges limited to only a few dozen
feet. Several of these new technologies, such as LoRa [6]
and RPMA [7], have gained good traction and there are
many commercial products available compatible with these
systems. However, we believe a decentralized wireless net-
work should use non-proprietary protocols and modulation
schemes and that participants in the Helium network should
have the freedom to choose between competing hardware
vendors. We do not consider an open alliance built on top of
proprietary hardware to be an acceptable compromise. While
there are many open-standard wireless networking stacks,
such as IEEE 802.15.4 [8] used in the first generation of our
wireless products, none meet our extremely long range and
low power criteria. It is this lack of open solutions that drove
the creation of a new protocol.

2.4.2 Outline

We introduce WHIP. WHIP is a highly secure, long range,
low power, bi-directional wireless network protocol that is
compatible with a wide range of existing radio transceivers
operating in the sub-GHz unlicensed frequency spectrum.
Authentication with the wireless network uses modern public-
key encryption and NIST P-256 ECC key pairs, with the
public keys for all participants stored in the blockchain.

The modulation format is simple and widely supported, easy
to implement and has excellent resistance to RF noise. There
are dozens of vendors implementing radio transceivers com-
patible with WHIP, such as Texas Instruments, Microchip,
and Silicon Labs.

WHIP is a narrowband wireless protocol which creates
several channels within the unlicensed spectrum and employs
frequency hopping to switch between channels. Typically
frequency hopping requires a complex time-synchronized
system that is limited in capacity. However, devices using
WHIP do not need to coordinate with Hotspots on channel
selection as Hotspots are capable of hearing all channels
within the available spectrum at any time. We choose narrow-
band to accomplish the following goals:

Spectral Efficiency It is necessary to operate within unli-
censed RF spectrum very efficiently. RF is a shared, lim-

4

ited resource, and therefore a focus on efficiency to in-
crease capacity and improve robustness is necessary.

Co-Existence Performance As the number of Devices and
networks increase, the ability to operate in noisy RF envi-
ronments without interference is a critical consideration.

Range Narrowband allows for extremely long-range com-
munications, with data rates that scale both up and down
depending on the density of Hotspots.

2.4.3 Implementation

WHIP supports several data rates, channel bandwidths, and
error-correction techniques. Hotspots and Devices dynami-
cally negotiate the combination of these options using a sig-
nalling packet delivered at the lowest bandwidth and symbol
rate to ensure maximum range for the initial communication.

The full WHIP specification will be made available by the
Decentralized Device Network Alliance.

2.5 Hotspots

Hotspots are physical network devices operated by Miners
that create wireless RF coverage over wide areas. They trans-
mit data back and forth between Routers on the Internet and
Devices on the network, process blockchain transactions,
and create Proofs-of-Coverage for the Helium network [Sec-
tion 3]. Hotspots can connect to the Internet using any TCP/IP
capable backhaul, such as Ethernet, WiFi or Cellular. Each
Hotspot contains a radio frontend chip capable of listening
to several MHz of radio spectrum at a time and can hear all
wireless traffic transmitted within that spectrum. In this con-
figuration modulation and demodulation is done in software,
which is typically referred to as a Software Defined Radio
(SDR). The benefit of this structure is that Hotspots can hear
any Device traffic transmitted within the frequency range, and
no synchronization between the Hotspot and Device needs
to occur. This allows Devices to remain inexpensive and rel-
atively simple and reduces wireless protocol overhead. If
a Miner wishes to minimize their Hotspot hardware costs,
synchronized frequency hopping schemes are also permitted
within the specification as a cheaper alternative to a more
expensive radio frontend.

Hotspots require a GPS or GNSS receiver to obtain accurate
position and date/time information. This satellite-derived
location is used in conjunction with other techniques to verify
that a Hotspot is, in fact, providing wireless network coverage
in the location it claims. Because satellite location messages
are easy to fabricate and do not necessarily prove that wireless
RF coverage is being created, multiple mechanisms are
required to validate this work as described in more detail
in [Section 3].

Satellite location information is also correlated with packet
arrival events to provide Proof-of-Location for Devices if
multiple Hotspots observe the same packet. This allows
devices to locate themselves without requiring a GPS/GNSS
transceiver physically, and therefore provide accurate location
data at a fraction of the battery life and cost of competing
methods. This method is described in detail in [Section 4].

We will make both a complete open-source reference design
and a finished product available at launch of the Heilum
network.

2.6 Devices

A Device is any wireless hardware capable of communicating
with Hotspots via WHIP. WHIP is designed to facilitate low
power data transmission and reception, so typically devices
would exist in the form of battery-powered sensors that can
function for several years using standard batteries.

WHIP is designed such that Devices can be manufactured
using commodity hardware available from a wide variety
of vendors with a very low-cost bill of materials (BOM).
The technology in modern radio transceivers, such as the
Texas Instruments CC1125 or STMicroelectronics S2-LP,
enables exceptionally long-range network systems that can
be built without the need for proprietary modulation schemes
or physical layers. Some of these radios are available for
around $1 at reasonable volumes.

It is recommended that each Device use the Microchip
ECC508A or equivalent hardware-based key storage device,
which can securely generate, store, and authenticate pub-
lic/private NIST P-256 ECC [3] key pairs without leaking
the private key. Also, a wide array of defense mechanisms
prevent logical attacks on the encrypted data between the key
storage device and its host MacDevicehine, along with physi-
cal protections on the security device itself. Users program
their key storage device as part of the onboarding process
defined in the WHIP wireless specification using a defined
API.

2.7 Routers

Routers are Internet-deployed applications that receive pack-
ets from Devices via Hotspots and route them to appropriate
destinations such as an HTTP or MQTT endpoint.

Routers serve several functions on the Helium network,
including:

• Authenticating Devices with the Helium network;

• Receiving packets from Hotspots and routing them to the
Internet;

• Delivering downlink messages, including OTA updates,
to Devices via Hotspots;

5

• Providing delivery confirmations to ensure transport trans-
actions are honest;

• Providing authentication and routing mechanisms to third-
party cloud services such as Google Cloud Platform or
Microsoft Azure; and

• Storing and making available a full copy of the blockchain
ledger by acting as a full node [Section 5.5]

When a Hotspot receives a data packet from a Device on the
Helium network, it queries the blockchain to determine which
Router to use given the Device’s Helium network address.
Anyone is free to host their own Router and define their
Devices’ traffic to be delivered there by any Hotspot on the
Helium network. This ability allows users of the Helium
network to create VPN-like functionality whereby encrypted
data is delivered only to a Router (or set of Routers) that they
specify and can optionally host themselves.

Routers can implement a system called a channel which han-
dles the authentication and routing of data to a specific third
party Internet application, such as Google Cloud Platform
IoT Core. These channel implementations can take advantage
of a Device’s onboard hardware security to create a secure,
hardware-authenticated connection to a third party which
would otherwise be difficult to implement directly on an
embedded microcontroller. We will make available an open
source reference implementation of a Channel that can be
used to build additional interfaces to Internet services.

We will also host a high-availability cloud router for anyone
to use and also provides and maintains an open-source router
that is available either as source code or a binary package for
a variety of operating systems and distributions.

The protocol specification required for implementing a router
is defined in the WHIP Wireless Specification document that
will be made available by the Decentralized Device Network
Alliance.

3. Proof-of-Coverage and
Proof-of-Serialization

In the Helium network, Miners must prove that they are pro-
viding wireless network coverage that Devices are able to use
to communicate with the Internet. Miners do this by comply-
ing with the Proof-of-Coverage protocol which the Helium
network and other Miners audit and verify. We use a Proof-of-
Serialization to ensure that Miners are correctly representing
their time in relation to others on the network, and obtain
cryptographic proof of dishonest behavior. Several compo-
nents of the Helium network, such as Proof-of-Coverage, use
Proof-of-Serialization as a cryptographic “anchor” that root
those occurrences with a cryptographic time proof. With a
combination of Proof-of-Coverage and Proof-of-Serialization

we can obtain cryptographic proof of the approximate loca-
tion and time of events occurring within the Helium network.

3.1 Motivation

Most existing blockchain networks such as Bitcoin [9] and
Ethereum [5] use a Proof-of-Work system that relies on an
algorithmic puzzle that is asymmetric in nature. These proofs
are extremely difficult to generate, but simple for a third
party to verify. Security on these networks is achieved by
the network-wide consensus that the amount of computing
power required to generate a valid proof is difficult to forge,
and as subsequent blocks are added to the blockchain, the
cumulative difficulty of the chain becoming prohibitively
difficult to fabricate.

These computation-heavy proofs are, however, not otherwise
useful to blockhain networks. We define useful as work that
is valuable to a blockchain network beyond securing the
ledger. While there have been attempts in other networks to
turn mining power into something useful, such as Ethereum
executing small programs called smart contracts, the majority
of the work is not useful or reusable. The mining process is
also extremely wasteful, as the determining factor in the work
is typically computational power, which consumes massive
amounts of electricity and requires significant hardware to
execute.

The proofs used in the Helium network must be resistant to
Sybil attacks in which dishonest Miners create pseudonymous
identities and use them to subvert the Helium network and
gain access to block rewards to which they should not be
entitled. This is a particularly difficult attack vector to manage
in a physical network like the Helium network. We must also
be resistant to a new attack vector: alternate reality attacks,
which exist where a dishonest group of Miners are able to
simulate that wireless network coverage exists in the physical
world when it in fact does not. An example of this would
be running the mining software on a single computer and
simulating GPS coordinates and RF networking.

We later propose the Helium Consensus Protocol [Section 6]
that uses Proof-of-Coverage to both secure the blockchain and
provide an extremely useful service to the Helium network,
which provides wireless network coverage that Devices can
use to send data to and from the Internet.

3.2 Inspiration

Proof-of-Coverage is an innovative proof that allows Miners
to prove that they are providing wireless network coverage
W in a specific region to a challenger, C. Proof-of-Coverage
is an interactive protocol where a set of targets Tn assert that
W exists in a specific GPS location L and then convinces C
that Tn are in fact creating W and that said coverage must

6

have been created using the wireless RF network. Proof-of-
Coverage is the first such protocol that attempts to prove
the veracity of miners in a physical space, and then use it to
achieve consensus on a blockchain network.

With Proof-of-Coverage we aim to solve for the following:

• Prove that Miners are operating RF hardware and firmware
compatible with WHIP;

• Prove that Miners are located in the geography they claim
by having them communicate via RF; and

• Correctly identify which version of reality is correct when
there is a conflict

Proof-of-Coverage is inspired by the Guided Tour Protocol
(GTP) [13] which devises a system for denial of service
prevention by requiring a client c to make a request to a
variety of “tour guide” computers Gn in order to gain access
to a server s. The tour guides must be visited in a specific
order and a hash of data exchanged which reveals the location
of the next Gn in order. Only after every Gn has been visited
can c gain access to s.

Once c gets to the last stop of the tour, it submits evidence
of the first and last stop to s who is able to verify that the
first and last stops of the tour are correct without needing to
contact Gn, and that c could only know the first and last stops
if it had completed the tour correctly.

While an extremely clever and innovative system, GTP
is not directly suitable as a proof in the Helium network
as RF networking has limited range and therefore cannot
communicate with peers anywhere on the Helium network.
We aim to construct a proof loosely based on the ideas
presented in GTP, but applicable to our protocol.

We combine Proof-of-Coverage with Proof-of-Serialization—
a proof that allows Miners on the Helium network to achieve
cryptographic time consensus among decentralized clients.
We aim to achieve rough time synchronization in a secure
way that does not depend on any particular time server, and in
such a way that, if a time server does misbehave, then clients
end up with cryptographic proof of that behavior.

3.3 Constructing Proof-of-Coverage

With the Proof-of-Coverage protocol, we aim to construct a
proof that takes advantage of the following characteristics
of radio frequency (RF) communication that are unique and
different to Internet communication:

1. RF has limited physical propagation and, therefore, dis-
tance;

2. The strength of a received RF signal is inversely propor-
tional to the square of the distance from the transmitter;
and

3. RF travels at the speed of light with (effectively) no
latency

Our goal is to verify whether Miners in a physical region
are acting honestly and creating wireless network coverage
compatible with WHIP. To do this, a challenger C determin-
istically constructs a multi-layer data packet O which begins
at an initial target, T1, and is broadcast wirelessly to a set of
sequential targets, Tn, each of which are only able to decrypt
the outer-most layer of O if they were the intended recipient.
Each target signs a receipt, Ks, delivers it to C, removes their
layer of O, and broadcasts it for the next target. Essentially
an “envelope of envelopes” only decipherable by the intended
recipient.

Target 1
(T1)

Target L
(T
L
)

Target
(T)

Challenger
(C)

K
T 1

O O1 O
T

O
L

K
T

K
T L

Figure 2. Multi-Layer Data Packet Deconstruction

3.3.1 Selecting the Initial Target

We aim to deterministically locate a geographic reference tar-
get, T , for the challenger, C. Both C and T are Miners in the
Helium network. T does not need to be geographically proxi-
mate to C. To locate T , C initially seeds verifiable entropy, η,
into the selection process by signing the current block hash
with its private key. Since the probabilities associated to each
miner form a discrete probability distribution [Equation 1],
C uses the probability associated to each eligible Miner to
locate T and applies the inverse cumulative distribution func-
tion using a uniform random number generated via η. This
allows us to ensure that we always target potentially dishonest
Miners as they have a lower score, thus increasing their prob-
ability of being targeted by C. Given that a Miners score is
diminishing linearly over time [Section 3.3.4], it is necessary
to create this inverse relationship to give low-scoring Miners
an opportunity to participate in the process and increase their
score. This diminishing score also incentivizes all the partic-
ipants to send receipts to C and broadcast the remainder of
O.

3.3.2 Constructing the multi-layer challenge

Once T has been selected, C must construct a multi-layer
challenge, O. O is a data packet broadcast over the Helium
network and received by geographically proximate targets Tn.

7

Geographically proximate is defined as within a radius of T , a
network value T radius. Each layer ofO,Ol, consists of a three-
tuple of E (S, ψ,R), where E is a secure encryption function
using the Elliptic-Curve Diffie-Hellman (ECDH) derived
symmetric key, S is a nonce, ψ is the time to broadcast the
next layer of the challenge and R is the remainder of O
consisting of recursive three-tuples. The maximum number
of Ol is bounded by a network value, Omax.

The construction logic of O by C is as follows:

1. A set of candidate nodes, Tn, are selected such that all
members of Tn are within a contiguous radio network that
also contains T ;

2. Two targets, T1 and TL, are selected by finding the highest
scoring targets in Tn furthest from T ;

3. A weighted graph, Tg, is constructed from Tn such
that members of Tg in radio range of each other are
connected by an edge weighted by the value of 1 −(
score(Ta)− score(Tb)

)
;

4. The shortest path between T1 to T to TL is computed
using Dijkstra’s algorithm [10] using the edge weights
from the previous step;

5. An ephemeral public/private keypair Ek and Ek-1 are
generated;

6. A layer Ol is created and added to O, and S is encrypted
with the combination of the public key of TL, retrieved
from the blockchain as TLk and Ek-1 as an ECDH ex-
change to compute a shared secret, known only to both
parties C and TL; and

7. The previous step repeats with additional layers added to
O until all TL→ T1 have a layer Ol included in O

The resulting O can be visually represented as depicted in
[Figure 3].

3.3.3 Creating the Proof

Once O has been constructed, it is delivered to T1 via the
Helium network and immediately broadcast by T1 via the
Helium network. WHIP is not a point-to-point system, so
several Miners within proximity of T1 will hear O. In this
example, only the specific target T will be able to decrypt E
and send a valid receipt back to the challenger, C.

We describe the approximate flow of Proof-of-Coverage
creation as follows:

1. T1 receives O from C via the Helium network, decrypts
the outermost layer and immediately broadcasts it R via
the Helium network;

2. T hearsO and attempts to decrypt the value of E by using
its private key where pk : Epk (S, ψ,R);

O

O
1
=E(S

1
,ψ,R)

T

T
1

T
2

T
3

TL

Figure 3. Construction of O

3. T records both the time of arrival β and the signal strength
υ of O;

4. If successful, T then creates signed receipt Ks, where
Ks = (S||β||υ) signed by the private key of T ;

5. T submits Ks to C via the Helium network, removes the
outer most layer, and wirelessly broadcasts the remainder
O; and

6. These steps repeat for T1..T ..TL, with TL being the last
target in the graph

C expects to hear responses from Tg within a time threshold
λ, otherwise it considers the Proof-of-Coverage to have con-
cluded. BecauseC is the only party with complete knowledge
of O, upper bounds of the values for β and υ are assigned by
C which are used to verify that each layer of O was trans-
mitted approximately where and when it was expected. The
upper bound for β is limited by the speed of light τ between
Tn and Tn − 1. Thus we know that, subject to some slight
delays from reflection or multipath, the packet should not
arrive at Tg later than τ multiplied by the geographical dis-

8

tance D plus some small episilon value, υ = τ ×
(
D + ε

)
.

For υ, because of the inverse-square law, we can calculate
the maximum RSSI (Received Signal Strength Indication)
possible for a packet transmitted, µ, from Tg − 1 to Tg as
µ = 1

D2 . Hotspots that are closer than expected, or which are
transmitting at a higher power to mask their location disparity,
are unlikely to get µ correct, given that they do not know who
the next layer of O is addressed to.

Once TL has delivered receipt to C, or λ has elapsed, the
Proof-of-Coverage is completed. The collection of signed
receipts, Ks, constitute the Proof-of-Coverage that C will
submit to the Helium network.

K1 = (S1 || β || υ)

KT = (ST || β || υ)

KL = (SL || β || υ)

Challenger
(C)

Target 1
(T1)

Target
(T)

Target L
(TL)

Figure 4. Proof-of-Coverage flow

3.3.4 Scoring

The score allocated to a Miner, and therefore the resulting
score of the Proof-of-Coverage, is an integral part of the
Helium Consensus Protocol described in [Section 6]. When
Miners join the Helium network, they are assigned a score,
φm. We consider any Miner with a score greater than φm to
be an honest miner. This score depreciates according to the
number of verifications the Miner has as well as the height
since its last successful verification. As φm decreases the
probability of the Miner M being the target for C increases,
such that the Helium network continually attempts to prove
that the lowest scoring Miners are acting honestly, and giving
Miners a reasonable chance to improve their scores.

In order to achieve this behavior we define the following
invariants:

M , Miner
v, number of successful verfications for M -

number of failed verifications for M
h, height since the last successful verification for M

If we assume that the ideal verification interval for any Miner
is close to 240 blocks (4 hours if we assume a 60 second block
time), we scale these invariants to fit the scoring functions:

v′, v/10.0
h′, h/480

Using the above we can now construct a staleness-factor, δ,
which would be used in determining the score of the Miner
M .

δm =

−(8.h′)2 v′ = 0
v′.(1− h′2

min(0.25,v′)) v′ > 0

v′.(1− 10.v′.h′2) v′ < 0

The above conditions strictly adhere to the following princi-
ples:

1. A negative v indicates that the Miner is consistently failing
verification.

2. If v = 0, then we do not have any trust information,
therefore, we use a steep parabolic curve for the decay
dependent on h′.

3. If v > 0, then it implies that the Miner has been suc-
cessfully verified consistently, hence, we use an inverse
parabolic curve that crosses the Y axis at 1, where the
width of the parabola increases as a factor of v up to
0.25. This implies that the more positive verifications
[Section 3] the Miner has accrued, the slower its score
decays as a factor of h′.

4. Finally, if v < 0, then this is the inverse of the above case,
wherein, a Miner has consistently been failing verification.
Therefore, we use a similar parabola as above; however,
the width of the parabola decreases as a factor of v, leading
to a higher score decay for the Miner as a factor of h′.

[Figure 5] shows the trends for each of the above functions.

0 0.13 0.25 0.38 0.5 0.63 0.75 0.88 1 1.13 1.25 1.38 1.5
−20

−19

−18

−17

−16

−15

−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

v′ = 0

v′ > 0

v′ < 0

h′

δm

Figure 5. Trendlines for the scoring functions

Adhering to the above set of rules, we define the following
scoring function, which is essentially a variation of a sigmoid
curve fluctuating between values (0, 1):

9

φm =
arctan(2.δm) + 1.58

3.16

This scoring function yields [Figure 6], which shows the
variation of the score with the staleness-factor:

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

δm

φ
m

Figure 6. Scoring algorithm and the resulting staleness
factor

[Figure 7] shows a snapshot of a random subset of the Helium
network at any blockchain height h. The Miners represent
random locations with an illustrated score, while the edges
are calculated using Dijkstra’s algorithm [10].

Figure 7. Snapshot of a random subset of the initial network

After 10,000 iterations the Helium network appears as repre-
sented in [Figure 8].

The goal of this system is to ensure that the scoring algorithm
considers that some Miners may attempt to act dishonestly.
However, because the calculated edge-weights (via Dijkstra’s
algorithm) and the target selection mechanism ensure that we
only boost the score of a Miner when it is being verified by
other high scoring Miners, we believe that the system will
favor legitimate Miners and deter dishonest ones.

Figure 8. Snapshot of a random subset of the network after
10000 iterations

3.3.5 Target Selection

Due to the way scoring decays, there is a possibility that a
given Miners’ score may become stale as that Miner may
not be verified within a reasonable interval. We therefore
structure the target selection mechanism to give Miners a
statistically greater chance to increase their score by being
selected as a target as their score decays. This is accom-
plished by biasing the probability of Miners being selected
as potential targets based on their individual scores.

Let the set of miners be defined as:

N = {m1,m2,m3 . . . mn | n > 1}

Let the set of miner scores be defined as:

S = {φm,m ∈ N}

We assign the target selection probability to each miner in the
following way:

P (m) =
1− φm

n−
n∑

i=1

φmi

(1)

The above equation ensures that the Miner with the lowest
score is assigned the highest probability of being selected as
a potential target while the opposite holds for the Miner with
the highest score.

Furthermore, it also asserts that the probabilities are inversely
proportional to the score of an individual Miner. This allows
us to successfully target potentially low scoring Miners and
improve the overall balance of the scoring system.

Another valuable aspect of assigning the probability as shown
above is that all the probabilities together form a discrete
probability distribution. A discrete probability distribution
satisfies the following equation:

∑
i

P (M = i) = 1

10

3.3.6 Verifying the Proof

Once TL has delivered Ks, or λ has elapsed, the Proof-
of-Coverage is considered complete. When C submits this
proof, via a special type of transaction, all receipts Ks from
T1...TL are included in the transaction published to the
Helium network. As all the steps originally completed by
C are deterministic in nature with verifiable and recreatable
randomness, it is simple for a verifying Miner, V , to recreate
the original steps and verify that the proof is legitimate.

Verifying Miners in the consensus group [Section 6] who see
the proof transaction are able to verify the Proof-of-Coverage
by recreating the following steps:

1. The verifying Miner, V , reconstructs the set of Miners N ;

2. The random seed η can be verified by V to have been
created at approximately the correct time by the private
key of C;

3. V then selects T from N , as seeding with η will result in
the same target selection;

4. The set of candidate Tn are reconstructed from which T1
and TL are determined;

5. Dijkstra’s algorithm is used to reconstruct the graph Tg;
and

6. The Ks receipts contained in BC are verified to have been
signed by the private keys of T1..T ..TL

Assuming these steps are completed successfully, the Proof-
of-Coverage is verified the score of C is adjusted appropri-
ately.

3.4 Constructing Proof-of-Serialization

To achieve cryptographic time consensus among decentral-
ized clients, we implement a simplified form of Google’s
Roughtime [12]. Roughtime is a protocol that aims to achieve
rough time synchronization in a secure way that does not
depend on any particular time server, and in such a way that,
if a time server does misbehave, clients end up with crypto-
graphic proof of that behavior.

This section describes the construction of the Proof-of-
Serialization protocol.

3.4.1 Creating the Proof

We outline the approximate process to achieve cryptographi-
cally secure time as follows:

1. To begin, a Miner M pseudo-randomly picks two Miners
M1 and M2, with whom to prove contact serialization;

2. It is assumed M has a public key for M1 and M2,
otherwise M should obtain it from the blockchain;

3. M generates a nonce, R, which is a SHA512 hash of the
Proof-of-Coverage, which M has partially constructed;

4. M then generates a salted hash commitment, K, called
the proof-kernel, where K = H (R||M1||M2);

5. M sends K to M1. M1 replies with T , a signed message
including the current time T1 and K; and

6. M knows that the reply from M1 was not pre-generated
because it includes the nonce R that M generated

Because M can not trust M1, it will ask for another time
from M2:

1. For the second request, a new nonce R is generated using
T truncated to 512-bits, blinded by XOR’ing a randomly
generated 512-bit number;

2. M then generates a sub-proof-kernel, L = H (R||T ||K),
and sends it to M2;

3. M2 replies with U , a signed message including the current
time T2 and L; and

4. U is now a proof artifact that shows that M desired and
then proved a serialization between M1 and M2

With only two servers, M can end up with proof that some-
thing is wrong, but no idea of the correct time But with half
a dozen or more independent servers, M will end up with
chain of proof of any server’s misbehaviour, signed by several
others, and enough accurate replies to establish the correct
time, Tt.

M

M1 M2

K=H(R||M1||M2)

T=(T1||K) U=(T1||L)

L=H(R||T||K)

K L

UT

Figure 9. Creating Proof-of-Serialization

3.4.2 Verifying the Proof

If we assume that the times fromM1 andM2 are significantly
different, and the time from M2 is before M1, then M has
proof of misbehaviour. The reply from M2 implicitly shows
that it was created later because of the way thatM constructed
the nonce. If the time from M2 is after M1, then M can
reverse the roles of M1 and M2 and repeat the process to
obtain, assuming steady clocks, a misordered proof as in the
other case.

To verify the correct time, it is necessary for M to repeat
the time synchronization process with enough Miners to gain
consensus on the correct time:

11

1. A Miner M again pseudo-randomly selects n Miners
M1...Mn;

2. M generates a salted hash commitment, K, and delivers
it to M1, where K = H (R||M1||M2);

3. M1 again responds with T , a signed message containing
the current time T1 and K;

4. M generates a sub-proof-kernel, L = H (R||T ||K), and
sends it to the next Miner Mn;

5. The next Miner replies with U , a signed message includ-
ing the current time and L;

6. These steps repeat through Mn until at least three time
responses, Tn, are monotonic; and

7. Tn can then be confirmed to be Tt, the correct time

M

M
1

M
2

M
n

K

L

U

T

Figure 10. Verifying Proof-of-Serialization

3.4.3 Utilizing the Proven Time

Once the correct time, Tt, has been determined via Proof-
of-Serialization, it is used by M and included during proof
construction as described in [Section 2.2]. The randomness,
η, used to computeO and, thus, obtain the Proof-of-Coverage
is tied to the previous block, which contains Tt. This allows
us to prove, with relative certainty, that some piece of data
D was created between the time of the previous block bt and
Tt. D in this case is the Proof-of-Coverage. Thus, we know
that D must have been constructed between bt and Tt. This
ensures that the Proof-of-Coverage cannot be pre-computed.

4. Proof-of-Location

Using Proof-of-Coverage and Proof-of-Serialization, we
achieve cryptographic proof of a Miners location and crypto-
graphic time consensus among Miners. We can take advan-
tage of these proofs to determine the physical geolocation
of WHIP-compatible Devices and generate a new type of
proof based on the Devices geolocations. We call this Proof-
of-Location.

4.1 Motivation

Location tracking is one of the most valuable use cases for
low power Devices. It is expected that there will be at least
70 million asset tracking devices shipping by 2022 [14].

Today, Global Navigation Satellite Systems (GNSS) are
used by the majority of Devices which require geolocation
services, with GPS being the most popular implementation.
GPS systems use a technique called Time of Arrival (TOA)
to determine the location of a receiver in relation to 20 or
so satellites orbiting the earth. GPS satellites synchronize
their time using a high precision on-board clock and regular
synchronization with control servers on the ground. GPS
receivers receive precisely timestamped data from a number
of satellites overhead and use a technique called trilateration
to provide a precise location on earth.

GPS has matured into an extraordinarily reliable service used
in a wide range of applications for providing both location
and time services. However, there are significant drawbacks
to GPS particularly in the realm of low power Devices that the
Helium network is designed to facilitate. It can take around 2
minutes for a GPS receiver to achiehve lock with sufficient
satellites, which translates to drastically reduced battery life.
As an example, a Device transmitting its location around
25 times a day may only last a month on a AA battery
compared with several years of life on the same battery
without GPS. Using GPS indoors is generally impossible,
as the GPS receiver typically needs line of sight with the
sky in order to see the 3-4 satellites required to calculate an
accurate location. GPS data is also delivered unencrypted,
which leaves the system extremely vulnerable to spoofing,
jamming, and other attack vectors.

We are interested in low power implementations of location
services that, in conjunction with an immutable distributed
ledger, can be used to verify location and time. Given the
above factors, we conclude that GPS is an unacceptable
mechanism for these requirements.

4.2 Constructing Proof-of-Location

Our goal is to verify the physical geolocation of a given
Device, D, without using GNSS hardware. To do this, we
rely on the fact that we have already determined and proven
the physical geolocation and cryptographic time consensus
of a given Miner, M , using the Proof-of-Coverage and Proof-
of-Serialization protocols described in [Section 3].

4.2.1 Precise timestamping of RF data

There are a handful of techniques used by positioning systems
without the use of GNSS, which include Received Signal
Strength Indication (RSSI), Time of Arrival (ToA), and
Time Differential of Arrival (TDoA). These techniques use

12

radio frequency transmissions, usually received by one or
more receivers, combined with various algorithms based on
characterstics of those transmissions.

Our conclusion is that TDoA is the most accurate but chal-
lenging technique to implement [15], [16], [17], [18]. TDoA,
in simple terms, relies on the variance between precisely
synchronized and recorded timing information between a
transmitter and several receivers. As such, it is critical to ac-
curately timestamp RF packets Devices emit, and synchronize
the clocks of Miners on the Helium network.

An example timestamping flow is as follows:

1. A Device, D, broadcasts a packet P containing arbitrary
data via the Helium network;

2. Several Miners, Mn, hear P , and record a timestamp Tn
of their reception time of P ;

3. Tn is created based on the nanosecond time received via
GNSS and stamped using raw radio sample data received
by the Hotspot radio frontend;

4. A signed transaction including P and Tn are delivered to
the router R belonging to D by Mn; and

5. R has now received several copies of P , each of which
has a slightly varying value of Tn

Gateway 1

GPS/GNSS

Gateway 2

Device

Gateway 3

t

t

t

2

3

1

Figure 11. Geolocation via TDoA

Typically, it is challenging to accurately record these times-
tamps as any nanosecond-level variance in the timestamp
can lead to significant variance in the resulting location so-
lution. To achieve this level of precision it is necessary to
use extremely high-bandwidth raw in-phase and quadrature
(I/Q) data from the Miner’s radio hardware and a fast enough

processor to sample this data, identify an appropriate packet,
and record the timestamp. Typically, a Field Programmable
Gate Array (FPGA) is used as the processor for this data as
these types of processors are able to process data in a deter-
ministic way. However, FPGAs are fairly expensive, power
hungry, and emit significant heat. Instead, our Hotspot mining
hardware uses a novel technique using commodity low-cost
components to process I/Q data and achieve timestamping
at this level of precision. As a comparative example, an ex-
isting low-cost LoRaWAN [23] access point is only capable
of providing timestamp data accurate within several millisec-
onds of precision - as radio waves travel at the speed of light,
each millisecond equates to approximately 300,000 meters
of physical distance, which we deem practically useless for
any accurate geolocation. Further information on the tech-
niques, components and schematics used in our Hotspot will
be released as open source software at launch of the Helium
network.

4.2.2 Using timestamps to derive location

Now that the Devices Router, R, is in possession of a variety
of signed messages, which include the precise timestamps,
Tn, it is possible to solve for the location of the Device D.
A variety of TDoA algorithms exist such as [20], [21], [19]
and [22]. If a sufficient density of Mn and, therefore, Tn are
recorded for a given packet, the location of D can be derived
down to a few meters depending on a variety of factors. We
encourage the interested reader to read the cited papers for
further details on TDoA algorithms, as they are beyond the
scope of this whitepaper.

4.2.3 Verifying Proof-of-Location

Once R has computed a location of D, it may become nec-
essary to verify that the reported location of D was accurate
at that given moment in time. As the Proof-of-Location is
deterministic and derived from information publicly avail-
able in the blockchain it is possible to reconstruct every step
involved:

• From the signatures contained within the timestamped
packets, Tn, every Miner involved in providing times-
tamps can be verified;

• By inspecting the assert_location [Section 5.3.3]
transaction, the claimed GPS location of those Miners
can be determined; and

• The Proofs-of-Coverage and scores [Section 3] for each
Miner can be retrieved from the blockchain and inspected

By auditing the above steps the router operator can crypto-
graphically prove (or disprove) the location of each of the
Miners involved in providing the components for Proof-of-
Location for a given Device D.

13

The accuracy of the proof will depend heavily on the number
of Mn involved and, therefore, Tn received. Additional RF
factors, such as reflections and multipath, can significantly
affect the accuracy of the location calculation.

5. Transactions

Transactions in the Helium network provide functionality that
enables address-to-address transfers of protocol tokens, simi-
lar to many existing blockchain networks, but also provide a
set of primitives that enable core functionality that is critical
to the operation of a DWN. We will first address Helium’s need
for microtransactions and propose a new solution.

5.1 The Helium Nework’s Need for Microtransactions

Devices Pay Per Packet The goal of the Helium network
is to offer Internet data transport fees (the fees paid by
Devices to Miners) that are an order of magnitude less than
anything currently available for this type of service. This
transport fee would need to be metered per-packet in order
to allow for maximum flexibility — this way, a Device
could transact with any Miner, even just to send or receive
a single packet without having previously established a
relationship with that Miner.

All Transactions Occur On-Chain The Helium network is
built on the philosophy that all transactions should occur
on-chain; that is, blocks should be sized and mined with
a frequency such that every transaction which occurs on
the Helium network should be stored in the blockchain.
To accomplish this goal, the cost of mining must be low,
blocks must be large enough to encapsulate a large number
of transactions, and blocks must be created frequently
enough that transactions are processed quickly.

Allow Devices to Persist Data to the Blockchain Because
the Helium network services a specific use, the DWN,
blocks must additionally be able store fingerprints of data
sent from Devices along with the transaction, which pays
a Miner for its transport service. We believe that this
holistic tamper-proof data trail will enable entirely new
use cases where the authenticity and veracity of sensor
data is critical.

5.2 Limitations of Existing Solutions

Now that we have discussed the requirements of transactions
within the Helium network, we outline the existing solutions
for micropayments on a blockchain and address their short-
comings as they apply to the Helium network.

Heavyweight Transactions This first option is suitable only
for larger transactions as the service fee is smaller than the
payment. This method does not work well for very small
transactions as whoever pays the transaction fee ends up

potentially paying more for the transaction fees than the
value being exchanged. This is a similar problem to buying
small-value items using credit cards today. The vendor
pays a minimum fee on each credit card transaction, and
under a certain charge they lose money on the transaction.
These heavyweight transactions are clearly not suitable
for use as a micro transaction system within the Helium
network.

Zero-fee Transactions While highly desirable from a device
perspective, a true zero-fee blockchain would be fraught
with spam transactions. It would be trivial to write a script
to pollute the blockchain with transactions meant only
to waste space on the blockchain and increase conges-
tion on the network. Some ostensibly zero-fee blockchain
implementations solve this issue in clever ways, such as of-
floading the work of processing and verifying transactions
to the transactors themselves. However, these implementa-
tions have their own issues, for example IOTA [24] has not
yet proved it is capable of operating this type of system
without the need for a centralized coordinator.

State Channels State channels [31] allow two parties to
exchange value, usually in small increments at a time,
with very limited risk. If one party thinks the other is
acting dishonestly, it can publish the final transaction in
the state channel to the blockchain and close the channel.
At most one payment is usually at risk. However, there
are several downsides: the payer has to lock up significant
funds for the lifetime of the state channel, meaning they
may be unable to open state channels with other parties
or pay other dues; transactions in the state channel do not
appear on the main chain at all; and these implementations
are relatively complex to execute well (note that neither
Lightning [29] nor Raiden [30] have become widely used
yet).

Payment in Arrear Payment in arrear, after the services
have been rendered, is an extremely risky method in
a decentralized pseudo-anonymous system. There is no
mechanism to gain certainty around the intent or honesty
of the entities transacting, nor do you know if the entities
control the requisite funds when the debt comes due. This
model only works when the parties involved trust each
other or have some other recourse to recover funds.

5.3 Types of Fees in Helium

In this section we outline the types of fees needed on the
Helium network, and propose solutions that take advantage of
the unique characteristics of the Helium Consensus Protocol
[Section 6].

14

5.3.1 Transport Fees

Devices using the Helium network to send and receive data
to and from the Internet must pay Miners what is known as a
transport fee. This fee compensates the Miner for delivering
data packets between the Device and the intended router
on the Internet, and is unrelated to the transaction fee that
Miners earn for mining transactions as part of blocks that are
recorded to the blockchain. The fee is negotiated between
the Router to which the Device belongs, and the Miner, as
Devices are not directly connected to the blockchain.

Miners set the price they are willing to accept to transport
data to and from the Internet on a per-byte basis.

A Devices router pays Miners the transport fee on transmis-
sion or reception of the data. This means that the Miner will
receive the transport fee prior to the transaction being mined
in a block and recorded into the blockchain. This entails
some risk for the Miner, as they must believe that the trans-
port payment is not malicious or fraudulent prior to it being
confirmed in the blockchain. However, given how low the
per-byte transport amount is likely to be, this risk seems toler-
able. A Miner can blacklist a Device or organization address
if they continually abuse the system.

An example transport fee process is as follows:

1. A Miner, M , hears a packet, P , broadcast by Device D;

2. M uses the address of D, attached to P , to identify a
router, R, as the owner of D;

3. M sends the signature, K(P), of P and an offer of n
tokens for transport to R;

4. R receives K(P) and the payment offer and determines
if it accepts the packet for the offered price,

5. Assuming R accepts the packet at the offered price, it
constructs a transaction T of value n payable to M and
sends it to the Miner; and

6. Once M sees the transaction in the reply it delivers P to
R and submits T to the consensus group for inclusion in
the Helium network

5.3.2 Transaction Fees

Transaction fees are an essential part of most blockchain
implementations. They incentivize Miners to include a trans-
action in their draft block and ensure that spam transactions
do not pollute the Helium network.

To determine the appropriate fee for a new transaction, the
transactor will take the median of the past δ packet transport
fees, within some margin of error. Until δ packet transports
have occured on the Helium network, the fee will be fixed
at a constant value α. By anchoring the transaction fee to
the current fees being charged for transport on the Helium

network, we root them in reality. The Helium network’s
primary purpose is to facilitate a network of wireless Internet
coverage. In order to accomplish this in the long term,
all of the economics of the system must align to make it
practical for the primary users to transact on the Helium
network. If one set of fees were to outstrip the others, then
the Helium network would quickly lose its utility for the key
user segment.

To enable Miners and other light clients to determine an
appropriate fee, full nodes [Section 5.5] will expose a fee
suggestion API. This way resource constrained entities that
do not maintain a complete copy of the blockchain will not
need to compute the fee from the most recent transactions.
During the block submission process, Miners in the consensus
group [Section 6] will verify the correctness of the block
and ensure that no fee has deviated beyond the acceptable
threshold of δ.

Due to the censorship-resilience built into the Helium Consen-
sus Protocol [Section 6], there is no incentive to include larger
transaction fees. Unlike Bitcoin, where miners cherry-pick
the transactions with the largest fees from their mempool to
include in their blocks, Helium miners cannot see the contents
of the transactions without collaborating with other members
of the consensus group to decrypt them. Transactions with
incorrect fees (either too high or low) will be rejected prior
to the block being appended to the blockchain.

5.3.3 Staking Fees

The assert location transaction, mentioned below [Sec-
tion 5.4], has a special type of fee calculation, a dynamic fee.
Because the Helium network reaches maximum usefulness
at a specific density of Hotspots, we want the fees to incen-
tivize the Helium network density to be as close to that ideal
as possible. To that end, the transaction fee for asserting a
location can be thought of as the y coordinate on a curve with
the formula:

y = (x −D)
4

+ F

where D is the ideal Hotspot density and F is the unit fee for
a location transaction. A sample graph of this function where
D = 3 and F = 1 follows:

As can be seen, Hotspots near the ideal network density are
cheap to add, but establishing a new network or overpopu-
lating a network gets expensive very quickly. This serves to
dis-incentivize Hotspot deployments that are not beneficial
to the network. In particular, Alternate Reality Attacks and
warehouses full of Miners become prohibitively expensive.

Miners who have not asserted their location, and therefore
not paid the staking fee, will not be considered for inclusion
in the consensus group [Section 6].

Miners who move physical location will need to assert a new
location, and pay the new staking fee.

15

0 1 2 3 4 5 6

0

20

40

60

80

Density

Fe
e

Figure 12. Staking fee vs Miner density

5.4 Primitives in The Helium Network

Having discussed the philosophy of our transaction system
and presented our approach to facilitating microtransactions
on the Helium network, we now delineate the transaction
primitives and their properties.

add hotspot Registers a new Hotspot on the Helium net-
work, adding it to an existing account that will be respon-
sible for supplying its stake (required for mining) and will
receive mining rewards [Section 6] and fees earned by the
Hotspot

Property Description

hotspot address the public key address of the Hotspot
being added to the network

owner address the address of the owner account
signatures mutual signatures of the owner and

Hotspot

assert location Asserts a Hotspot’s location in the form of
geographic coordinates, requiring a dynamic stake

Property Description

hotspot address the address asserting its location
nonce a monotonically increasing integer
latitude the latitude of the Hotspot
longitude the longitude of the Hotspot
altitude the altitude of the Hotspot
signature the signature of the Hotspot

payment Moves tokens from one account, the payer, to
another account, the payee, including the requisite fee.

Property Description

payer address the address of the sender
payee address the address of the recipient
nonce a monotoically increasing integer
value an integer-based representation of the

tokens to send
signature the signature of the sender

5.5 Light Clients and Full Nodes

Until now, we have discussed how to deal with microtrans-
actions in a cost-effective way, however we have not yet
addressed how to deal with the inevitable continuously in-
creasing size of the blockchain. One requirement for the
Helium network is that all transactions occur on-chain. This
means that the size of the full blockchain will eventually grow
quite large. This is compounded by the fact that all Miners on
the Helium network are Hotspot devices, relatively limited in
computation power and storage space.

We solve this constraint by allowing mining nodes to operate
as light clients on the blockchain, pruning old blocks and
transactions as needed and keeping only the latest ledger
values. They will communicate over the peer-to-peer network
with full nodes which maintain a complete history of the
blockchain to verify transactions.

This raises a question: who is responsible for operating full
nodes, and what is their incentive to do so? Routers are
software-only applications with access to scalable, cloud-
based storage and will be required to operate full nodes in
order to fulfill their purpose. We will operate a set of hosted
routers that will make it easy for developers to launch prod-
ucts without needing to deploy their own router. However,
many enterprise developers, who are required to maintain a
higher standard of privacy, will want to host their own router.
Together, these routers will form a network of full nodes capa-
ble of supporting resource constrained Hotspots and wallets
operating light clients.

6. Helium Consensus Protocol

Instead of an extremely computationally expensive and power
hungry Proof-of-Work, Miners generate Proofs-of-Coverage
[Section 3]. In this section we present how these useful proofs
can be used to create permissionless network consensus.

6.1 Motivation

Many current generation blockchains rely on a computation-
ally difficult Proof-of-Work to protect the Helium network
against Sybil attacks, also known as Nakamoto Consensus.
The fact that the Proof-of-Work is computationally expensive
to create, but cheap to verify means that in order to propose

16

a new valid block to the Helium network there is evidence
that a significant amount of computation has been expended.
Due to the fact that computation is limited by hardware cost,
power cost, physical space and computational efficiency of
modern technology, Sybil attacks become impossible. How-
ever, this approach, while fundamental to the mainstream
adoption of blockchain technology, has several downsides.
Chief among the downsides is the power consumption; it is
estimated that the Bitcoin network is consuming more power
than many small countries. Bitcoin’s Proof-of-Work is so
wasteful it is now on the list of the top uses of electricity in
the world and whenever the value of Bitcoin goes up, so do
the resources devoted to mining it.

Related to the power problem is the mining pool problem.
Many blockchains have mining pools where users band
together to, in parallel, mine a single block and listing the
pool’s address as the party to get paid. The pool then shares
the block reward with the members of the pool. This ends
up defeating many of the advantages of decentralization as
both Bitcoin and Ethereum have come to be dominated by
less than 10 mining pools each. These large pools effectively
prevent independent parties from mining blocks on their own.
This means that the consensus protocol for these blockchains
is effectively controlled by a very small number of mining
pools and risks becoming further centralized.

More recently there has been increased momentum around
making blockchain consensus protocols less wasteful and
more useful to the network. Filecoin [25] has a Proof-of-
Spacetime and Ethereum [5] is moving towards a Proof-of-
Stake [26] approach.

For the Helium network, we desire a consensus protocol with
the following attributes:

Permissionless Nodes should be able to freely participate
in the Helium network without permission or approval
from any other entity, as long as those nodes operate in
accordance with the consensus rules.

Extremely decentralized in nature Network consensus should
be designed such that there is no incentive available for
taking advantage of macro-economic factors, such as
cheaper access to electricity in certain geographies, and
that simply buying more hardware in the same location
is either ineffective or cost prohibitive. Additionally, it
should be impossible for mining pools to form and for
groups to collaborate in mining blocks.

Byzantine Fault Tolerant The protocol should be tolerant
of Byzantine failures [27] such that consensus can still
be reached as long as a threshold of actors are acting
honestly.

Based on useful work Achieving network consensus should
be useful and reusable to the network. Work performed in
Nakamoto Consensus-based systems is only useful for the

particular block being mined and is not otherwise useful
or reusable on the network. An ideal consensus system
would contain work that is both useful and reusable to the
network beyond simply securing the blockchain.

High confirmed transaction rate Our ideal consensus pro-
tocol would be able to process a very high number of
transactions per second, and once a transaction is seen
in a block it would be considered confirmed. Many exist-
ing blockchains require a lengthy settlement time while
the network achieves consensus which is not ideal in a
system like the Helium network, which may experience a
very high number of transactions and where waiting for a
transaction to settle is not tenable.

Transactions are censor-resistant Ideally, Miners would
not be able to censor or otherwise pick and choose trans-
actions prior to mining them. This would not only nullify
any attempts to nefariously censor transactions, but would
allow for otherwise unattractive transactions (such as
fixed-fee transactions) to be included in the blockchain.

The remainder of this section lays out our construction of a
consensus protocol with these design goals in mind that we
refer to as the Helium Consensus Protocol.

6.2 Helium Consensus Protocol

We propose a unique consensus protocol around Proof-of-
Coverage to capture the useful work of verifying the Helium
network as a replacement for Proof-of-Work, combined with
a variant of the HoneyBadgerBFT (HBFT) [4] asynchronous
byzantine fault tolerant protocol.

6.2.1 HBFT

HBFT is an asynchronous atomic broadcast protocol designed
to achieve optimal asymptotic efficiency, initially presented
in 2016. In HBFT, the setting assumes a network of N
designated nodes with distinct well-known identities (P0

through PN-1). In our HCP instantiation, this network of
nodes is known as the consensus group C. The consensus
group receives transactions as input, and its goal is to reach
common agreement on an ordering of these transactions and
form them into blocks to be added to the blockchain.

The protocol proceeds in rounds, where after each round, a
new batch of transactions is appended to the blockchain. At
the beginning of each round, the group chooses a subset of
the transactions in its buffer and provides them as input to an
instance of a randomized agreement protocol. At the end of
the agreement protocol, the final set of transactions for this
round is chosen.

HBFT relies on a threshold encryption scheme [28] that
requires transactions be encrypted using a sharded public
key, such that the consensus group must work together to

17

decrypt it. This means that no individual node is able to
decrypt or censor a particular transaction without colluding
with the majority of the group.

6.2.2 Applying Proof-of-Coverage to HBFT

In the Helium network, miners are required to submit Proofs-
of-Coverage to the Helium network at an epoch, ∆p. These
proofs are submitted as a special type of transaction, and
subsequently recorded to the blockchain. As detailed in
[Section 3], Miners increase their scores as they submit valid
proofs to the Helium network. At an epoch, ∆c, the highest
scoring Miners, N , are elected as the new HBFT consensus
group, C.

By using Proof-of-Coverage to elect the members of C we
are essentially substituting for well-known identities in the
HBFT protocol. As we desire a permissionless network, we
can use Proofs-of-Coverage to determine whether Miners are
acting honestly and reward the most honest Miners at a given
epoch by electing them to the HBFT consensus group.

6.2.3 The consensus group

During ∆c, the currently elected consensus group is responsi-
ble for creating blocks and appending them to the blockchain.
All new transactions on the Helium network are submitted
to the current members of the consensus group. New blocks
are created by C at a fixed interval ∆b and recorded to the
blockchain. A token block reward is split among the members
of C for every block submitted, along with the sum of all
fees contained within valid transactions. In the unusual case
that there are no transactions during ∆b, an empty block is
appended to the blockchain.

6.2.4 The mining process

Once the consensus group C has been elected for a given ∆c

epoch, a distributed key generation phase occurs to bootstrap
a threshold encryption key TPKE. TPKE is a cryptographic
primitive that allows any party to encrypt a transaction to
a master public key PK, such that C must work together to
decrypt it. Once f + 11 correct members of C compute and
reveal decryption shares, σi, the transaction can be recovered.
Once PK is generated via the TPKE.Setup function, a block
containing PK is immediately submitted to the blockchain.
Each member Nm in C receives a secret key share, SKi, of
PK.

Miners on the Helium network submit new transactions t
to C. Each member of C takes a random subset of the first
B transactions in its queue and applies the TPKE.Enc(PK,
t) → e function and submits them to the other member of
C. Once the members of C receive at least N − f e they

1 f is a protocol parameter equal to the number of tolerable byzantine faults

run the TPKE.DecShare(SKi, e)→ σi function to produce
their decryption share. Members broadcast their σi to the
other members of C, and once f + 1 members have seen σi
shares they can proceed to the TPKE.Dec function using PK,
e and the σi shares and attempt to decrypt the transaction.
Each member of C appends decrypted transactions to its own
instantiation of the next block kept in a local buffer. Double-
spend and other malformed transactions are removed from
these blocks at this stage.

As members of the group cannot decrypt e on their own,
a given member cannot censor a transaction prior to its
inclusion in the candidate block without f + 1 members of C
colluding as transactions are received. Any honest member
of C that has t in the first B of its transaction queue will
eventually be able to include t in a block as the other members
of C cannot decrypt the transaction until it has been agreed
to, at which point it is too late to censor it. As the members
of C for a ∆c epoch are selected based on their submitted
Proofs-of-Coverage, making the members unpredictable, this
type of collusion would be extremely challenging to execute.

Once f + 1 nodes have agreed on the transactions for the
block, a TPKE threshold signature is obtained over the block.
This certifies that enough nodes to exceed the byzantine fault
threshold have agreed on a block. Members of C that are
censoring or disagreeing on the contents of the block will
produce an incompatible signature share that cannot be used
to count towards the signature threshold. This block is then
gossiped via the Helium network to all Miners and added to
the blockchain.

M

e

σiσi

N

C

NN

B

B

B

B

B

Figure 13. The Consensus Group and Mining

6.2.5 Conclusion

We have presented the Helium Consensus Protocol which
combines a modern, asynchronous and highly efficient byzan-
tine fault tolerant consensus protocol with a novel mecha-
nism for substituting permissioned identity with a useful and

18

reusable Proof-of-Coverage. The resultant protocol satisfies
the design requirements of being permissionless, decentral-
ized, byzantine fault tolerant, based on useful work, and with
a very high-rate censor proof transaction mechanism.

We refer the interested reader to [4] for a detailed breakdown
and analysis of the HoneyBadgerBFT protocol.

7. Future Work

This paper presents a well thought-out design for building
the Helium network. However, we consider this to be just
the beginning of the engineering, research and design of
decentralized wireless networks. We believe that this tight
integration of real-world hardware with a blockchain and
a native token is a novel and valuable innovation that can
be applied to other kinds of networks and wireless physical
layers. We believe that the future of blockchains is not about
who has the most hashing power or access to the cheapest
electricity, but about blockchains where the mining proof is
tied to providing a valuable, verifiable service.

There are several initiatives that we either have or intend to
undertake, including:

• Investigate the applicability of applying these ideas to
other physical layers such as WiFi, Bluetooth and Cellular

• Explore the potential for the delivery of 5G 60GHz+
mmWave connectivity through a similar design

• Research and implement more Proofs-of-Coverage to
keep the Helium network secure as it grows

• Game theoretical analysis of the incentive system

• Formally prove the scoring algorithm used in the Proof-
of-Coverage

• Create and release the WHIP wireless specification

• Manufacture Hotspots and Device modules for availability
at launch of the Helium network

• Investigate the deployment of a smart contract environ-
ment beyond the basic DWN primitives

• Continued work and evolution of Forward Error Correc-
tion techniques

Acknowledgments

This document is the result of collaborative work by members
of our team, and would not have been possible without the
help, feedback, and review of our board of directors, advisors,
investors and collaborators. We extend our most heartfelt
thanks to all involved.

We would also like to extend our thanks to Jeremy Rubin of
the MIT Digital Currency Initiative. Your earliest feedback

and direction was critical to some of the design decisions and
evolution of this project. We also thank the Blockchain at
Berkeley team for their help and detailed review of this work.

We would also like to acknowledge many of the prior works
and inventions that have allowed us to create this project,
most notably Bitcoin [9] and Ethereum [5].

19

References

[1] Marcus Torchia, Monika Kumar. IDC - Worldwide Semiannual
Internet of Things Spending Guide, 2017 (document)

[2] Shawn Fanning. Napster - independent peer-to-peer file
sharing, 1999 1

[3] Mehmet Adalier. Efficient and Secure Elliptic Curve
Cryptography Implementation of Curve P-256 2.6

[4] Andrew Miller and Yu Xia and Kyle Croman and Elaine Shi
and Dawn Song. The Honey Badger of BFT Protocols, 2016
2.2, 6.2, 6.2.5

[5] Vitalik Buterin. Ethereum, 2014 3.1, 6.1, 7

[6] LoRa Alliance. LoRa Alliance - Wide Area Networks for IoT,
2013 2.4.1

[7] Ingenu. RPMA Technology 2.4.1

[8] IEEE. IEEE Standard for Low-Rate Wireless Networks, 2015
2.4.1

[9] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash
system, 2008 3.1, 7

[10] E. W. Dijkstra. A note on two problems in connection with
graphs, 1959 4, 3.3.4

[11] David Karger, Eric Lehman, Tom Leighton, Matthew Levine,
Daniel Lewin, Rina Panigrahy. Consistent Hashing and
Random Trees: Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web, 1997

[12] Adam Langley, Google. Roughtime - a project that aims to
provide secure time synchronisation 3.4

[13] Mehmud Abliz, Taieb Znati. A Guided Tour Puzzle for Denial
of Service Prevention, 2009 3.2

[14] Mobile Experts Asset Tracking IoT Devices, 2017 4.1

[15] Guofang Dong, Bin Yang. TDOA-Based and RSSI-Based
Underground Wireless Positioning Methods and Performance
Analysis 4.2.1

[16] Mohamed Laaraiedh, Lei Yu, Stephane Avrillon. Comparison
of Hybrid Localization Schemes using RSSI, TOA, and TDOA,
2011 4.2.1

[17] Mohamad Yassin, Elias Rachid, Rony Nasrallah. Performance
Comparison of Positioning Techniques in Wi-Fi Networks,
2014 4.2.1

[18] Muhammad Farooq-i-Azam, Muhammad Naeem Ayyaz.
Location and Position Estimation in Wireless Sensor Networks,
2016 4.2.1

[19] Sangdeok Kim, Jong-Wha Chong. An Efficient TDOA-Based
Localization Algorithm without Synchronization between Base
Stations, 2015 4.2.2

[20] Igor Olegovych Tovkach, Serhii Yakovych Zhuk. Recurrent
Algorithm for TDOA Localization in Sensor Networks, 2017
4.2.2

[21] Peter W. Boettcher, Gary A. Shaw. A Distributed Time-
Difference of Arrival Algorithm for Acoustic Bearing
Estimation 4.2.2

[22] Shuai He, Xiaodai Dong, Wu-Sheng Lu. Asynchronous Time
Difference of Arrival Positioning System, 2015 4.2.2

[23] LoRa Alliance. LoRaWAN - LoRa Alliance Technology, 2014
4.2.1

[24] David Snsteb, Sergey Ivancheglo, Dominik Schiener, and
Serguei Popov. IOTA - Next Generation Blockchain, 2015 5.2

[25] Protocol Labs. Filecoin - A decentralized storage network,
2017 6.1

[26] Wikipedia. Proof-of-Stake 6.1

[27] K Driscoll, B Hall, M Paulitsch, P Zumsteg, H Sivencrona.
The Real Byzantine Generals, 2004 6.1

[28] Joonsang Baek, Yuliang Zheng. Simple and Efficient Threshold
Cryptosystem from the Gap Diffie-Hellman Group, 2003 6.2.1

[29] Joseph Poon, Thaddeus Dryja. Lightning Network - Scalable,
Instant Bitcoin/Blockchain Transactions, 2017 5.2

[30] brainbot. The Raiden Network - Fast, cheap, scalable token
transfers for Ethereum, 2017 5.2

[31] Jeff Coleman. State Channels, 2015 5.2

20

	Introduction
	Key Components
	System Overview

	The Helium DWN
	Participants
	Blockchain
	Physical Implementation
	Wireless Protocol (WHIP)
	Motivation
	Outline
	Implementation

	Hotspots
	Devices
	Routers

	Proof-of-Coverage and Proof-of-Serialization
	Motivation
	Inspiration
	Constructing Proof-of-Coverage
	Selecting the Initial Target
	Constructing the multi-layer challenge
	Creating the Proof
	Scoring
	Target Selection
	Verifying the Proof

	Constructing Proof-of-Serialization
	Creating the Proof
	Verifying the Proof
	Utilizing the Proven Time

	Proof-of-Location
	Motivation
	Constructing Proof-of-Location
	Precise timestamping of RF data
	Using timestamps to derive location
	Verifying Proof-of-Location

	Transactions
	The Helium Nework's Need for Microtransactions
	Limitations of Existing Solutions
	Types of Fees in Helium
	Transport Fees
	Transaction Fees
	Staking Fees

	Primitives in The Helium Network
	Light Clients and Full Nodes

	Helium Consensus Protocol
	Motivation
	Helium Consensus Protocol
	HBFT
	Applying Proof-of-Coverage to HBFT
	The consensus group
	The mining process
	Conclusion

	Future Work

