
Autonomous Economic Agent Framework

David Minarsch1, Marco Favorito1,2, Seyed Ali Hosseini1, Yuri Turchenkov1, and
Jonathan Ward1

1 Fetch.ai, UK
2 Sapienza University of Rome, Italy

{david.minarsch, marco.favorito, ali.hosseini, yuri.turchenkov,
jonathan.ward}@fetch.ai

Abstract. The Internet and the services delivered via it are increasingly cen-
tralised on a few monopolistic platforms. Today’s web frameworks are conceived
to cater for increasing returns to scale and winner-takes-all business models with
a built-in asymmetry between users and services. Existing multi-agent and agent
architectures have seen no significant adoption outside niche applications. We
propose a novel agent framework which is designed to allow for a decentralised
digital economy to manifest where each individual and organisation is repre-
sented by an autonomous economic entity with its own agency. The framework
bridges the old and new web and employs distributed ledger technologies as core
parts of its construction. We introduce the framework, discuss the performance
characteristics of its current implementation and demonstrate several application
areas.

Keywords: Autonomous Economic Agents · Agent Framework · Multi-agent
System Framework · Distributed Ledger Technology.

1 Introduction

1.1 Web 2.0 and its short-comings

Today’s digital services are highly centralised. By some estimates [15], over 43% of
web-traffic volume incorporates one of the FAANMG3 platforms. In the process, they
extract a significant amount of rent [41] indicating low competition.

The increasing monopolisation is partially caused by unsuited or outdated regula-
tion [42]. However, it is argued that the design of the Web 2.0 [16] itself contributes to
this outcome. In particular, the dominant client-server architecture favours a centralised
ownership of servers (monolithic or micro-service implementation) [4], causes a lack
of interoperability [6], and leads to centralisation of economic control and data [5].

3 Facebook, Apple, Amazon, Netflix, Microsoft and Google.



2 D. Minarsch et al.

1.2 Two new trends

With the recent rise of the decentralised Web 3.04 [46] and distributed ledger tech-
nologies (DLT)5 [48] - in particular Bitcoin [31] and Ethereum [12] - it is evident that
alternative, decentralised systems can be technologically and economically sustained.

We introduce an agent framework for autonomous economic agents (AEAs), which
embraces this technological shift and which we demonstrate is capable of allowing
multi-stakeholder multi-agent systems (MAS) to finally find wide-spread production
deployment. Our novel approach is chiefly enabled by two drivers: the first is the trust-
less, non-intermediated exchange of wealth and public code execution in smart con-
tracts6 mediated by DLT, which thereby provides a financial and contracting layer for
the MAS [13]; the second, is the readiness of businesses to cooperate on the design
of custom on-chain (i.e. DLT enabled) and off-chain (e.g. MAS) stateful protocols that
permit industry-wide competition without a winner-takes-all market dynamic [32,7].

1.3 Contribution

The core contribution of the framework is that it enables wide-spread and scalable real-
world deployment of multi-stakeholder MAS utilising DLT as evidenced in section 5.
This contribution is facilitated by the framework’s innovation in five key areas: de-
veloper experience, software engineering, artificial intelligence, economics, and user
experience.

The main benefit of the framework for the software developer is that it allows them
to re-use existing code to a much larger degree than in other agent frameworks (e.g.
[8,20]) and client-server oriented web frameworks (e.g. [38,17]). Re-use is not restricted
to libraries but extends to application specific components encapsulating subsets of the
agent’s business logic.

An actor-like framework design leads to software components that are loosely cou-
pled, allowing for concurrency without requiring shared state which enables additional
complexity to be incorporated by adding modules to the agent. Interaction between
components occurs mostly via asynchronous message passing. This provides a consis-
tent and scalable approach to communication within and across agents. Hence, an AEA
can itself be viewed as a small MAS.

From the AI perspective, a developer is offered the flexibility to combine different
approaches, such as reinforcement learning [44], deep learning [19] and symbolic AI
approaches [21] in one framework.

4 As discussed in [25] not to be confused with the Semantic Web [24].
5 A distributed ledger is a consensus of replicated, shared, and synchronised data where process-

ing nodes are geographically and organisationally - no central control - spread across multiple
entities. Bitcoin network is a permissionless DLT in the form of a blockchain, with proof of
work as the consensus algorithm and Bitcoin as the cryptocurrency.

6 Smart contracts are computer programmes which are executed by nodes of a DLT, usually a
blockchain, and can, similar to objects, hold their own state. They can be used to automate
enforcement of contract terms, reduce the need for trusted intermediaries and allow for reuse
and encapsulation to create interoperable on-chain protocols like decentralised exchanges [2].



Autonomous Economic Agent Framework 3

Fig. 1: Diagrammatic representation of an AEA-based MAS. AEAs run off-chain, on heteroge-
neous devices controlled by their stakeholders. They can use DLTs for settlement and commit-
ments and various (agent-based) services for communication as well as search and discovery.

The native integration with DLT is novel relative to other agent and multi-agent
frameworks (e.g. JADE [8], SPADE [20], Jason [10]). It provides a financial settle-
ment and commitment layer, enabling the framework to support deployment of multi-
stakeholder systems. In particular, it is possible for anyone to write software for de-
ployment into decentralised and permissionless markets and therefore provides explicit
economic benefit to its user and allows for new economic organising principles.

Finally, the framework enables developers to distribute agents as finished products
to end-users, lowering barriers to wide-spread adoption of MAS. For instance, through
encapsulating complicated interaction flows with DLT and delegation to AEAs, the
framework improves the user-friendliness of DLT [28].

2 Definition and Environment Requirements

In reference to [39] we define an autonomous economic agent (AEA) as

an intelligent agent operating on an owner’s behalf, with limited or no inter-
ference of that ownership entity, and whose goal is to generate economic value
for its owner;

where the economic aspect is realised through exchange and commitments facilitate
primarily by DLT. The literature contains related definitions as machines that obtain
their own agency through being equipped with crypto-currency wallets [35]. This def-
inition is in so-far helpful as it puts the focus on the wallet which the agent maintains
and which provides an explicit financial metric of the agent’s economic value.

The preceding definitions imply a set of requirements for the environment an AEA
operates in (stylised in figure 1). In particular, AEAs and MAS more generally require:

1. a means to interact with other AEAs, agents and services in a structured way,
2. a delivery mechanism of messages via the Internet,



4 D. Minarsch et al.

Fig. 2: Simplified illustration of the AEA framework. Connections executed in the Multiplexer re-
ceive messages in AEA and third-party protocols. The AgentLoop calls Handlers and Behaviours
in Skills based on messages and configurable ticks, respectively. The DecisionMaker manages
the (crypto) Wallet. Dark corners indicate (non-core, agent-specific) packages kept in Resources.

3. access to a financial settlement system, and
4. access to a search and discovery system.

The AEA framework makes use of a protocol framework for bilateral dialogue-
based interactions to aid 1 [22]. For message delivery (2) AEAs utilise a peer-to-peer
permissionless agent communication system [36], which supports arbitrary message-
based interaction protocols (1). Currently, a custom centralised search and discovery
system for agents is used to satisfy 4. Thanks to the modular nature of AEAs this can
easily be replaced with a fully decentralised alternative in the future. Finally, AEAs—
unlike other agent types—form part of the second layer to distributed ledgers [28]. They
use ledgers and smart contracts [33] to perform financial transactions and make com-
mitments (3). Crucially, AEAs are not run on a ledger (i.e. they are not a smart contract),
they are executed on any host with the necessary resources and Internet access.

3 Framework Architecture

The architecture described in this paper is currently implemented as open-source in
the Python programming language.7 However, the framework could be implemented in
any object-oriented programming language that supports asynchronous programming.
An illustration is provided in figure 2.

7 The AEA framework’s repository can be found at https://github.com/fetchai/agents-aea.

https://github.com/fetchai/agents-aea


Autonomous Economic Agent Framework 5

3.1 Actor-like design and modularity

The AEA framework is designed as an actor-like [3] asynchronous message passing
system [23]. As such, it allows for a high degree of modularity and components largely
communicate via messages.

The framework can be divided into two parts: the core developed by the authors and
external contributors, and packages implementing agent-specific business logic. These
can be developed by anyone using the framework. There are four types of packages that
can be readily added to the framework:

– Skills: primary business logic modules (CPU bound),
– Protocols: messages and dialogue rules,
– Connections: networking related (I/O bound) logic and translations between AEA

and third-party protocols,
– Contracts: wrappers for smart contract logic.

Furthermore, the framework allows straightforward inclusion of additional APIs to
third-party DLTs via framework plugins and supports the use of readily available soft-
ware packages in the target programming language.

From the perspective of the framework, packages consist of code and configuration.
The framework loads the specified packages and then places them with respect to each
other and executes them where appropriate (cf. inversion of control). Before we explore
the packages in turn, we discuss the core framework components.

3.2 Core components of an AEA

The central framework class is the AEA class which houses three core components:
Resources, Runtime and Wallet.

Runtime and Resources Resources is a collection of packages available to the AEA.
In particular, it contains the Skills, Protocols, Connections and Contracts the AEA uses
in code form as well as their configurations. Resources acts as a registry for code to
be executed by the Runtime. Packages in Resources are immutable. However, addi-
tional packages can be dynamically added at runtime. Dynamically added packages are
removed from Resources once the AEA tears down.

The Runtime is responsible for executing the code in the packages. It consists of
three abstractions:

– a Multiplexer executes the Connection packages,
– an AgentLoop executes Skill packages, as well as the DecisionMaker, a unique type

of Skill discussed below, and
– an optionally enabled TaskManager executes long running and CPU bound tasks.

The Runtime deals with two types of primitive concepts: scheduled tasks and events
or messages. All messages or events are processed atomically by the AEA components.

The Multiplexer and the Connections that it contains continuously listen for events
on pipes, sockets and queues. External communication arriving at one of the AEA’s



6 D. Minarsch et al.

Connections is, where necessary translated to framework-specific messages. For in-
stance, HTTP requests are translated to messages in a HTTP Protocol. The Multiplexer
then passes these messages to an AEA-internal queue, the InBox, for processing by
the AgentLoop. Similarly, the Multiplexer continuously monitors another AEA-internal
queue, the OutBox, for outgoing messages and passes those to the relevant Connection
for processing.

The AgentLoop is responsible for proactive execution of periodic tasks like Be-
haviours (discussed in detail below) in Skills, and processing removal and addition of
new components, as well as reacting to new messages appearing in the InBox and han-
dling them with a corresponding Handler in Skills. It is the responsibility of the Agent-
Loop to fetch the appropriate component responsible for processing a given message
from the Resources and passing the message to the component.

A feature that arises from the framework’s implementation in Python is that the Run-
time can be configured in two modes: the threaded mode, where the AgentLoop and the
Multiplexer are run in their own threads (i.e. the tasks scheduled by a given component
are cooperatively scheduled in the same thread) , and the async mode, where all the
tasks scheduled by the components are run asynchronously on a single event loop. This
allows the developer to configure the trade-off between cooperative multitasking used
in the event loop implementation (async mode) and pre-emptive scheduling used for
thread scheduling (threaded mode) [43].

Wallet The Wallet is a simple data structure. It contains the private keys of the AEA,
and therefore allows for the public key and address to be computed and for the agent to
append digital signatures to transactions.

3.3 Packages

The four packages make up the core mechanism via which the AEA is extensible and
composable by design.

Communication (Connections and Protocols) The Protocol and Connection pack-
ages enable AEAs to communicate with other AEAs as well as internally.

Connections wrap APIs or SDKs to in-process services or services external to the
agent like a user interface, a peer for inter-agent communication or a DLT. They can
be though of as both the sensors and the actuators of an AEA, as they provide an in-
terface to the outside world. A Connection is responsible for providing the translation
between framework communication languages (see Protocols below) and external lan-
guages, if needed. A Connection can be developed by anyone and the base Connection
class defines a stable interface to the Multiplexer. The interface consists of four pri-
mary methods: ‘connect’ and ‘disconnect’, ‘send’ for sending via the Connection and
‘receive’ for receiving via it.

To communicate with each other and for communication between AEA components
including Skills and Connections, AEAs use Envelopes which act as an outer agent
communication language (ACL) [34] wrapping specific ACLs (cf. [18]) . An Envelope
has five fields:



Autonomous Economic Agent Framework 7

– sender and to: the Address8 of the sender/receiver;
– protocol id: the identifier of the Protocol used;
– message: a bytes field for the serialized message;
– context: an optional field for routing, containing a URI.

The ‘protocol id‘ references a specific ACL or other language, and the ‘message‘
field contains the serialized Message in that Protocol (cf. interaction protocol [45]),
for instance FIPA [14] ACL. This setup guarantees that all AEAs can communicate
with each other on the Envelope level via a standard format. However, they can only
decode the content of a message if they have an implementation of the Protocol. For
the delivery of the Envelope various (third-party) protocols and services can be used
(e.g. [36]). By adopting this layered approach to communication we avoid reinventing
the wheel: any existing message-based agent architecture could be connected by simply
writing a translator that encodes/decodes an Envelope and still ensures interoperability.
We also make it possible to have a consistent language inside the framework whilst
being compatible with external changes.

The Protocol framework is adopted from [22]. Along with the Message class, which
deals with representation, and the Serializer class which deals with decoding and en-
coding, a Protocol specifies a set of Rules over the message sequence.

Skills Skills implement the business logic of an agent. They allow encapsulation of
(almost) any kind of code and are reusable across AEAs.

Skills are made up of three core abstractions:

– a Handler is responsible for handling messages in a registered Protocol, thereby
implementing the AEA’s reactive behaviour. Each Handler is responsible for a sin-
gle Protocol, but can send messages of any type of Protocol. The AgentLoop calls
a ‘handle’ method and passes it the message as it appears in the InBox.

– a Behaviour encapsulates actions resulting from internal logic rather than as direct
reactions to messages. They implement the proactiveness of the agent. Behaviours
come in different types (e.g. cyclic/one-shot/finite-state-machine/etc. [28,8]) and
are scheduled tasks from the perspective of the Runtime. The AgentLoop calls a
defined ‘act’ method in the behaviour at the time specified in the Skill configuration.

– a Model is a data class. It is used to maintain shared state within a Skill.

With these abstractions9, and the ability to call arbitrary code from them, Skills can
implement logic ranging from very basic to extremely advanced. As such they might
wrap simple conditional logic to complex deep learning models.

The framework does restrict the execution time of calls to both ‘act’ and ‘handle’.
For CPU-bound and long-running logic (e.g. machine learning and other AI workloads),
a Task can be created and submitted to a thread- or subprocess-based TaskManager.

8 AEAs use Addresses for identification and for communication purposes. The Address is de-
rived from the public key of a public-private key pair generated from the elliptic curve as
specified by, for instance, the standard SECP256k1 [11].

9 An analogy to the Model-View-Controller architecture prevalent in many web frameworks can
be observed: Handlers have similarities to Controllers, and Messages can be considered the
equivalent to Views.



8 D. Minarsch et al.

A Skill shares state via the SkillContext which is accessible from any Handler, Be-
haviour and Model in the Skill. Additionally, SkillContext, modules within a Skill have
read access to a limited number of objects exposed on the AgentContext, which con-
tains agent-specific information, such as its public keys and addresses, and utilities,
such as the OutBox for messages. Importantly, however, a Skill does not have access to
the context of another Skill and it also does not have access to the agent’s Wallet. To in-
teract with other components, specifically Skills, Connections and the DecisionMaker,
the Skill needs to use messages.

Contracts Contracts wrap smart contracts [47] for third-party distributed ledgers. In
particular, they provide wrappers around the application binary interface (ABI) of a
smart contract. They expose an API that is compatible with the framework to abstract
away the implementation details of the ABI from the agent’s Skills.

Contracts usually contain the logic to create smart contract transactions and make
smart contract calls. As such they require network access to the underlying ledger. Con-
tract packages are therefore executed in Connections. Skills communicate via messages
with the Contract.

3.4 Economic control

DecisionMaker The DecisionMaker is a specialised type of Skill and the only compo-
nent in the AEA with access to the Wallet.

The role of the DecisionMaker is limited to considering internal messages from
Skills and making economically relevant and safe decisions. It does not directly in-
teract with other AEAs. Instead, it mediates the competing Skills and restricts their
capabilities.

The goals and preferences of an agent are managed by the DecisionMaker. It is the
only object capable of updating the agent’s ownership state (as represented on-chain
in the form of tokens or off-chain) and preferences (cf. utility function) by signing
transactions, and hence accepts or rejects the Skills’ proposed transactions.

The framework provides a basic reference implementation of a DecisionMaker with
a closed form representation of preferences, ownership and goals which is internally
closed. The developer is free to extend it to their needs.

Crypto and Ledger APIs The DecisionMaker makes heavy use of Crypto APIs and—
via Skills and Connections—of Ledger APIs. Framework-side, these consists of abstract
classes: the former defines a set of abstract methods to create and handle DLT identities
(i.e. public/private key pair for specific ledgers) as well as signing transactions, whilst
the latter defines the abstract methods to interact with the ledger (e.g. get the current
balance, send a transaction etc.). Crypto APIs are stored in the Wallet, and Ledger APIs
can be called through the Ledger Connection, a default Connection that acts as access
point to any ledger that the application supports. By default, the supported ledgers are
Ethereum [12] and Cosmos [26], as well as any compatible ledger architectures. The
framework allows for loading new types of Crypto and Ledger APIs types at runtime,
through a global shared registry and plugin mechanism, hence achieving a high degree
of extensibility and interoperability with other DLT systems.



Autonomous Economic Agent Framework 9

3.5 Persistence

Certain parts of the agent’s state, like for instance completed dialogues and their mes-
sages as well as other data accumulated at runtime, should be stored to avoid a contin-
uous growing memory requirement at runtime and to be able to (automatically) recover
the state from a crash. The current reference implementation provides an optionally
configurable storage backend.

3.6 Dynamic adaption and security

AEAs are designed to dynamically add additional packages at runtime. To ensure in-
tegrity of the packages is maintained as they are shared and used in the AEA, the frame-
work deploys a hashing strategy. All code is hashed using IPFS [9] multi-hashes. This
ensures that an AEA can verify the integrity of a package at runtime.

3.7 Relationship to other agent architectures

The AEA architecture attempts to combine deliberative and reactive components and
can hence be seen as a hybrid agent: Handlers deal with reactive elements as representa-
tive of deductive reasoning agents. Behaviours and Tasks can deal with the deliberative
elements of the belief-desire-intention (BDI) model and are more generally representa-
tive of features found in practical reasoning agents [49].

Furthermore, the AEA framework splits the deliberative and reactive elements into
both vertical and horizontal layering. Skills are by default horizontally layered. Each
Skill is connected to input (i.e. messages) so several Skills can act on the same input
and produce suggestions (i.e. transactions) to the DecisionMaker. This means, Skills
effectively compete as they consume the same messages but do not necessarily commu-
nicate. Within Skills, Handlers are vertically layered. Each type of input is dealt with at
most one layer (one Handler).

The separation into Behaviours, Handlers and Tasks within Skills shows similarity
to Turing Machines: Their planning layer is matched by our Behaviours. Their reactive
layer is mirrored by our Handlers. Their modelling layer can be seen to relate to either
our Behaviours or Tasks [27].

The Java-based JADE multi-agent framework [8] provides similar programming ab-
stractions of ours regarding communication and execution model. The main differences
specifically to JADE are: (i) each agent lives in its own Java thread, and must be asso-
ciated to a JADE container (i.e. a Java process); our framework gives more flexibility
by letting users run AEAs in different processes, in the same process but on different
threads, or in the same process but using asynchronous programming; (ii) the proactive
and reactive components are conflated into the single Behaviour abstraction, whereas
we make a clear distinction by introducing the Handler abstraction; (iii) the schedul-
ing of behaviours is cooperative, whereas ours is pre-emptive, either thread-based or
asynchronous with configurable timeouts. Being a more mature framework, JADE pro-
vides features that the AEA framework does not currently support, e.g. ontology-based
content, agent persistence, agent mobility services, and others.



10 D. Minarsch et al.

SPADE [20] is a lightweight MAS library for agent development. Its major fea-
tures are asynchronous execution based on Behaviours, a communication system built
on the XMPP protocol [40], and a message dispatching mechanism based on message
templates. The AEA framework almost completely covers the SPADE features in a
modular and effective way: indeed, the AEA framework gives much more flexibility on
the execution model to adopt and the transport layer to use (the XMPP protocol can be
implemented as a custom Protocol-Connection pair of an AEA); and the same features
of message templates can be achieved by relying on a Handler that based on certain
attributes of the message spawns new Behaviours dynamically.

Jason [10] is a Java-based implementation of an extended version of the AgentS-
peak programming language [37]. Jason is heavily based on the BDI agent architecture
and logic programming, with reasoning cycles “sense-plan-act” that allows agents to
evaluate which plans are triggered for execution each time an event occurs. Instead, the
agent abstraction of our framework is closer to JADE’s and SPADE’s (agent loop that
executes behaviours and handlers code), hence less declarative and succinct than Ja-
son. This also reflects the different foci: where Jason has strong theoretical foundations
and lends itself to implement BDI-type agents, our framework is general purpose (i.e.
not tied to a specific agent-type), production-ready and with a focus on wide-spread
adoption for DLT enabled consumer and industrial applications.

Unlike any other framework, the AEA framework provides a number of unique fea-
tures: (a) native integration with DLTs for transacting and use of smart contracts, as well
as economic control oriented design; (b) developers can package and re-use business-
level functionality; (c) developers can distribute agents as finished products to end-users
for deployment, for instance by using the AEA registry (https://aea-registry.fetch.ai) or
IPFS [9]. Developers and researchers can leverage existing agent frameworks in the
AEA framework by developing Connections and Protocols to bridge them.

4 Benchmark

We demonstrate a number of benchmark results of the Python implementation. These
highlight that the framework is capable to serve a significant message load both in the
single- and multi-agent per-process case.

All benchmarks use the same resource. A 2.2GHz Intel® Xeon® CPU with 15GB
of RAM and 4 cores is used. The benchmarks are run on a freshly provisioned machine.
The scripts are available in the project codebase.10

4.1 Single-agent: Reactiveness

We first measured the latency (milliseconds) and throughput (Envelopes processed per
second) of an AEA, both in ‘async‘ and ‘threaded’ runtime modes. The AEA has only
one Connection and one Skill with a single Handler. The Connection continuously pro-
duces an Envelope containing a Message, deposits it in the InBox and waits for a re-
sponse. The Handler simply echos received Messages back to the sender, the Connec-
tion itself. The experiment is run 100 times, and each run lasts for 10 seconds.
10 Details on reproducability are provided in Appendix A.

https://aea-registry.fetch.ai


Autonomous Economic Agent Framework 11

Mode Latency (ms) Throughput (env/sec)

async 0.526 ± 0.521 1630.32 ± 16.211
threaded 0.800 ± 0.147 1106.762 ± 18.864

(a) Reactiveness

Mode Throughput (env/sec)

async 6158.846 ± 516.349
threaded 4587.775 ± 820.525

(b) Proactiveness

Table 1: Benchmarks for both ‘async’ and ‘threaded’ runtime mode. The experiment is run 100
times, 10 seconds for each run. Latency and throughput are measured in milliseconds and en-
velopes per second, respectively.

The results shown in Table 1a demonstrate that the AEA is capable of processing
in excess of 1630 envelopes per second in the async mode and 1106 in the threaded
mode. Moreover, on average, the latency in the async mode is lower than the one in the
threaded mode.

4.2 Single-agent: Proactiveness

We next measured the latency and throughput of an AEA with a single Skill implement-
ing a single Behaviour and a single Connection. The Behaviour continuously produces
Messages. The Connection simply records receipt of a Message.

The results, reported in Table 1b, show that the AEA is capable to produce 34%
more envelopes in async relative to threaded mode.

Given the architecture, it is to be expected that the async runtime mode dominates
threaded in both reactive and proactive case. The tasks are well coordinated by the
framework, hence cooperative multitasking should not pose a problem and the event
loop implementation causes less context switching than threading.

4.3 Multi-agent, single process

We next measure the throughput when multiple agents are connected in a complete net-
work and send each other envelopes. All agents are executed in the same process.11 The
individual agents are run in their own threads and each agent is run with the designated
runtime mode. Each agent’s OutBox is pre-populated with 100 envelopes which are
then continuously circulated by the agents.

The round-trip times (RTT) are comparable for low numbers of AEAs in both run-
time modes. For higher numbers of AEAs the async mode shows significantly lower
RTT. A similar picture emerges for memory consumption. AEAs, irrespective of their
runtime mode, are run in different threads and therefore multi-threading guarantees
some form of non-starvation property and relatively equally distributed time slices
across AEAs.
11 The AEA framework is primarily targeting stand-alone AEA deployment matching its primary

application as a multi-stakeholder MAS agent framework. This benchmark demonstrates that
nevertheless multiple AEAs can be run in a single process.



12 D. Minarsch et al.

Agents RTT (ms) Memory (mb)
async threaded async threaded

2 0.340 ± 0.006 0.339 ± 0.012 54.928 ± 0.236 54.89 ± 0.152
4 2.108 ± 0.033 1.998 ± 0.046 56.715 ± 0.676 56.672 ± 0.617
8 7.935 ± 0.538 8.170 ± 0.371 62.062 ± 0.846 62.447 ± 1.038
16 16.757 ± 1.824 25.966 ± 3.45 76.881 ± 1.868 80.422 ± 2.014

Table 2: Multi-agent benchmark for both ‘async‘ and ‘threaded‘ runtime mode. The experiment
is run 100 times, 10 seconds for each run. Initially 100 envelopes are deposited in each AEA’s
OutBox.

5 Use Cases

We ourselves and third parties have developed AEAs targeting a number of different
use cases with the framework. We provide a short overview to demonstrate the breath
in scope:

– Trading Agent Competition: [29,30] demonstrate how a population of AEAs can
replicate an exchange economy. Each AEA maintains a basket of digital assets and
aims to increase its utility by executing bilateral trades autonomously. Agents ne-
gotiate using a FIPA-like [14] Protocol and settle trades atomically on a blockchain.

– Autonomous Supply Chain: [50] demonstrate the feasibility of an autonomous
supply chain using MAS—powered by the AEA framework—and Internet of Things.
The scenario showcases a perishable food products supply chain mechanism. Five
types of agents were implemented for this demonstration: retailer, wholesaler, sup-
plier, logistics agent, and third-party logistics agent.

– Agent Worlds 1 to 4: We have demonstrated the production readiness of the frame-
work and AEAs developed with it in the context of an online and public agent
competition which took place in four stages from October 2020 until February
2021. Any participant could download a finished AEA from the registry (https:
//aea-registry.fetch.ai), connect it via configuration to a public weather or mobility
API for various cities across the world, and then run it as a seller of public weather
or mobility data. The AEA would register itself for the competition, provided the
participant staked a small amount of crypto-currency on a smart contract deployed
on the Ethereum blockchain.12 An AEA created and run by the authors acted as a
buyer of this data. At multiple time points throughout the day, it would search for
one of the data types in one of the specified cities and then purchase the data from
all sellers offering it which were registered for the competition. In excess of 2’000
agents competed over two months and performed a total of more than 110’000
transactions. Each transaction was settled on a Fetch.ai test-net blockchain and re-
sulted in a micro-reward for the participants.

– Autonomous Option Traders: [1] use an AEA to maintain a portfolio of put and
call options deployed on the Ethereum ledger. The AEA allows the user to manually

12 This acts as a spam protection and as an incentivisation mechanism.

https://aea-registry.fetch.ai
https://aea-registry.fetch.ai


Autonomous Economic Agent Framework 13

submit option order requests via a graphical user interface. The AEA translates the
HTTP requests into a sequence of actions which ultimately result in the order being
executed on the ledger and being stored in local persistent storage. The AEA then
monitors the option holdings of the user and exercises them when they are in-the-
money (ITM) and due to expire within 5 minutes. This removes the possibility of
ITM options expiring worthless and ensures users take profitable positions.

6 Discussion

6.1 Architecture Choices and Limitations

The reference implementation of the AEA framework in the Python programming lan-
guage imposes an overhead at runtime relative to compiled programming languages.
This was a conscious choice at the start of the development cycle to enable rapid iter-
ation and prototyping. It means that in practice running an AEA on devices with less
resources than a Raspberry Pi is a challenge. However, as the benchmark demonstrates,
environments with a Python interpreter and moderate networking, CPU and storage re-
quirements can make full use of the framework. The listed use cases the framework
supports are more than satisfiable with these minimal requirements. Furthermore, with
increased adoption, a lightweight AEA library can be implemented in a compiled pro-
gramming language like Golang.

Over time, we hope to provide, in the core of the framework, generic implementa-
tion(s) of the DecisionMaker component which permit increasingly powerful configu-
ration or ‘training’ by the user. For simple use cases, where the utility of an agent can
be easily represented and evaluated, this is already possible as we demonstrate in our
use cases.

Further limitations are discussed in the framework’s documentation.

6.2 Value add

We identify five innovations which underpin our main contribution discussed in section
1.

From a developer perspective the key benefit the framework provides are its modu-
larity and composability. Unlike for other web and agent frameworks the componentisa-
tion and reusability extends to arbitrary application-specific business logic through the
encapsulation in Skills. This flexibility does not necessarily lower the integrity of the
system as the package hashing strategies deployed ensure that components are uniquely
identified and tamper-proof.

From a software engineering perspective, all the software components are loosely
coupled and an actor-like design approach maintained. Only a minimal amount of
shared state exists and interactions between components is almost entirely via asyn-
chronous message passing.

The generality of Skills presents another core contribution of the framework design.
In particular, it means the agent framework does not prescribe the type of AI tools
used, it is agnostic to whether the developer uses a deep learning model, reinforcement
learning or traditional AI approaches.



14 D. Minarsch et al.

The openness in the design approach is also maintained for Protocols. Unlike other
agent framework we do not prescribe usage of a particular application or agent protocol
(e.g. FIPA), instead developers have access to a generic protocol framework which can
be adjusted to the relevant use case.

One of the biggest differentiators relative to existing agent and multi-agent frame-
works is the native integration with distributed ledgers and the associated crypto-economic
security concepts. This allows AEAs to be fully autonomous economic entities with an
ability to transact and make commitments. It also allows arbitrary coordination mecha-
nisms to be implemented.

The other big differentiator is offered on the user experience: agents can be dis-
tributed as finished products to end-users. This enables developers to share arbitrary
agent-based solutions directly with their user base.

7 Conclusion

The AEA framework presented in this paper is the only production-ready framework
we are aware of that unifies MAS and DLT. It is designed and built for production
and in parallel to the development of real-world applications by ourselves and third
parties. Arguably, several aspects of the framework, in particular the DecisionMaker,
are underdeveloped. However, in the spirit of open-source development and to grow a
community of AEA developers and researchers we believe it is crucial to start with an
initial, useful implementation and iterate from there. We welcome contributions to the
framework design and its implementation.

A Experiments

In this section, we provide instructions to reproduce the experiments.

A.1 Requirements

The framework can be used on any major platform (GNU/Linux, macOS, Windows).
However, to run the benchmark, we suggest using UNIX-like systems (e.g. GNU/Linux
or macOS).

Make sure your platform has the following software installed and the associated
binaries accessible from the system path of your operating system:

– Python 3.8. This can be downloaded from here: https://www.python.org/downloads/
release/python-380/.

– Make sure you have Pip installed: https://pip.pypa.io/en/stable/installing/. Also, the
script requires that the CLI tool pip should point to pip3. Note that on some
platforms this is not the default configuration.

– Git. This can be downloaded from here: https://git-scm.com/downloads.

https://www.python.org/downloads/release/python-380/
https://www.python.org/downloads/release/python-380/
https://pip.pypa.io/en/stable/installing/
https://git-scm.com/downloads


Autonomous Economic Agent Framework 15

A.2 Steps to reproduce the experiments

– Download the following script in your working directory to reproduce results:
https://raw.githubusercontent.com/fetchai/agents-aea/v0.10.1/benchmark/run from
branch.sh. (Alternatively, for the latest version use: https://raw.githubusercontent.
com/fetchai/agents-aea/main/benchmark/run from branch.sh.)

– Assign execution permissions to the script. For example, on UNIX systems:
> chmod u+x run_from_benchmark.sh

– Run the script:
> ./run_from_benchmark.sh

References

1. 8ball030: Autonomous hegician (2020), https://github.com/8ball030/AutonomousHegician
2. Adams, H., Zinsmeister, N., Salem, M., Keefer, R., Robinson, D.: Uniswap v3 core. Tech.

rep., Uniswap (2021)
3. Agha, G.A.: Actors: A model of concurrent computation in dist. systems. Tech. rep., MIT

(1985)
4. Arkko, J.: The influence of internet architecture on centralised versus distributed internet

services. Journal of Cyber Policy (2020)
5. Baker, D.: The internet is broken (2017), https://www.wired.co.uk/article/

is-the-internet-broken-how-to-fix-it
6. Basaure, A., Vesselkov, A., Töyli, J.: Internet of things (IoT) platform competition: Con-

sumer switching versus provider multihoming. Technovation (2020)
7. Beck, R., Müller-Bloch, C.: Blockchain as radical innovation: a framework for engaging with

distributed ledgers as incumbent organization. In: HICSS (2017)
8. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing multi-agent systems with JADE.

John Wiley & Sons (2007)
9. Benet, J.: IPFS - Content Addressed, Versioned, P2P File System. arXiv:1407.3561 (2014)

10. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems in AgentS-
peak using Jason. Wiley (2007)

11. Brown, D.R.: Sec 2: Recommended elliptic curve domain parameters. SEC (2010)
12. Buterin, V.: Ethereum Whitepaper (2013), https://ethereum.org
13. Calvaresi, D., et al.: Multi-agent systems and blockchain: Results from a systematic literature

review. In: PAAMS (2018)
14. Committee, I.F.S.: Communicative act library specification. Tech. rep., Foundation for Intel-

ligent Physical Agents (2001)
15. Cullen, C.: Over 43% of the internet is consumed by Netflix, Google, Amazon,

Facebook, Microsoft, and Apple: Global Internet Phenomena Spotlight (2019),
https://www.sandvine.com/blog/netflix-vs.-google-vs.-amazon-vs.-facebook-vs.
-microsoft-vs.-apple-traffic-share-of-internet-brands-global-internet-phenomena-spotlight

16. DiNucci, D.: Fragmented future. Print 53 (1999)
17. Django Software Foundation: Django (2005), https://djangoproject.com
18. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an Agent Communication Lan-

guage. In: CIKM (1994)
19. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep learning. MIT press Cambridge

(2016)
20. Gregori, M., Palanca, J., Aranda, G.: A jabber-based multi-agent system platform. In: ICAA

(2006)

https://raw.githubusercontent.com/fetchai/agents-aea/v0.10.1/benchmark/run_from_branch.sh
https://raw.githubusercontent.com/fetchai/agents-aea/v0.10.1/benchmark/run_from_branch.sh
https://raw.githubusercontent.com/fetchai/agents-aea/main/benchmark/run_from_branch.sh
https://raw.githubusercontent.com/fetchai/agents-aea/main/benchmark/run_from_branch.sh
https://github.com/8ball030/AutonomousHegician
https://www.wired.co.uk/article/is-the-internet-broken-how-to-fix-it
https://www.wired.co.uk/article/is-the-internet-broken-how-to-fix-it
https://ethereum.org
https://www.sandvine.com/blog/netflix-vs.-google-vs.-amazon-vs.-facebook-vs.-microsoft-vs.-apple-traffic-share-of-internet-brands-global-internet-phenomena-spotlight
https://www.sandvine.com/blog/netflix-vs.-google-vs.-amazon-vs.-facebook-vs.-microsoft-vs.-apple-traffic-share-of-internet-brands-global-internet-phenomena-spotlight
https://djangoproject.com


16 D. Minarsch et al.

21. Haugeland, J.: Artificial intelligence: The very idea. MIT press (1989)
22. Hosseini, S.A., Minarsch, D., Favorito, M.: A practical framework for general dialogue-

based bilateral interactions. In: Engineering Multi-Agent Systems. (to publish) (2021)
23. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the jvm platform: a comparative

analysis. In: PPPJ (2009)
24. Kashyap, V., Bussler, C., Moran, M.: The Semantic Web: Semantics for Data and Services

on the Web. Springer (2008)
25. Khoshafian, S.: Can the real web 3.0 please stand up? (2021), https://www.rtinsights.com/

can-the-real-web-3-0-please-stand-up/
26. Kwon, J., Buchman, E.: Cosmos: A network of distributed ledgers (2016)
27. Lizán, F., Maestre, C.: Intelligent buildings: Foundation for intelligent physical agents.

IJERA (2017)
28. Minarsch, D., Hosseini, S.A., Favorito, M., Ward, J.: Autonomous economic agents as a sec-

ond layer technology for blockchains: Framework introduction and use-case demonstration.
In: 2020 Crypto Valley Conference on Blockchain Technology (CVCBT). pp. 27–35 (2020)

29. Minarsch, D., Favorito, M., Hosseini, A., Ward, J.: Trading agent competition with au-
tonomous economic agents. In: AAMAS. IFAAMAS, Auckland, New Zealand (2020)

30. Minarsch, D., Hosseini, S.A., Favorito, M., Ward, J.: Trading agent competition with au-
tonomous economic agents. In: ICAART. vol. 13, pp. 574–582 (2021)

31. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Tech. rep., Manubot (2019)
32. Poddey, A., Scharmann, N.: On the importance of system-view centric validation for the

design and operation of a crypto-based digital economy. arXiv:1908.08675 (2019)
33. Poncibò, C., Di Matteo, L., Cannarsa, M., et al.: The Cambridge HB of smart contracts,

blockchain tech. and digital platforms. Cambridge Univ. Press (2019)
34. Poslad, S.: Specifying Protocols for MAS Interaction. ACM Trans. Auton. Adapt. Syst.

(2007)
35. Pschetz, L., Speed, C.: Autonomous economic agents. In: Living in the Internet of Things

(IoT 2019) (2019)
36. Rahmani, L., Minarsch, D., Ward, J.: Peer-to-peer autonomous agent communication net-

work. In: AAMAS. p. 1037–1045. AAMAS ’21, IFAAMAS, Richland, SC (2021)
37. Rao, A.S.: Agentspeak (l): Bdi agents speak out in a logical computable language. In: Euro-

pean workshop on modelling autonomous agents in a multi-agent world. pp. 42–55 (1996)
38. Ruby on Rails: Ruby on rails (2004), https://rubyonrails.org
39. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson (2020)
40. Saint-Andre, P., Smith, K., Tronçon, R., Troncon, R.: XMPP: the definitive guide. ” O’Reilly

Media, Inc.” (2009)
41. Sandbu, M.: The economics of big tech (2018), https://www.ft.com/economics-of-big-tech
42. Sandbu, M.: Fixing the internet’s broken markets (2018), https://www.ft.com/content/

5fbc2848-17c2-11e8-9376-4a6390addb44
43. Silberschatz, A., Galvin, P., Gagne, G.: Operating system concepts. Wiley (2018)
44. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press (2018)
45. Torroni, P., et al.: Modelling interactions via commitments and expectations. In: Handbook

of research on multi-agent systems: Semantics and dynamics of organizational models. IGI
Global (2009)

46. Voshmgir, S.: Token Economy: How the Web3 reinvents the Internet. BlockchainHub (2020)
47. Wang, S., et al.: Blockchain-enabled smart contracts: architecture, applications, and future

trends. IEEE Transactions on Systems, Man, and Cybernetics: Systems (2019)
48. Wattenhofer, R.: Distributed Ledger Technology: The Science of the Blockchain. CreateS-

pace Independent Publishing Platform (2017)
49. Wooldridge, M.: An Introduction to MultiAgent Systems. Wiley (2009)
50. Xu, L., Brintrup, A., Minaricova, M.: Autonomous supply chains (2020), https://vimeo.com/

438586015/bf50c7bc9

https://www.rtinsights.com/can-the-real-web-3-0-please-stand-up/
https://www.rtinsights.com/can-the-real-web-3-0-please-stand-up/
https://rubyonrails.org
https://www.ft.com/economics-of-big-tech
https://www.ft.com/content/5fbc2848-17c2-11e8-9376-4a6390addb44
https://www.ft.com/content/5fbc2848-17c2-11e8-9376-4a6390addb44
https://vimeo.com/438586015/bf50c7bc9
https://vimeo.com/438586015/bf50c7bc9

	Autonomous Economic Agent Framework

