
Flow: Separating Consensus and Compute
– Execution Verification –

Dr. Alexander Hentschel
alex.hentschel@dapperlabs.com

Maor Zamski Dieter Shirley Layne Lafrance
maor@dapperlabs.com dete@dapperlabs.com layne@dapperlabs.com

Abstract

Throughput limitations of existing blockchain architectures are well documented and are one
of the most significant hurdles for their wide-spread adoption. In our previous proof-of-concept
work, we have shown that separating computation from consensus can provide a significant
throughput increase without compromising security [1]. In our architecture, Consensus Nodes
only define the transaction order but do not execute transactions. Instead, computing the block
result is delegated to compute-optimized Execution Nodes, and dedicated Verification Nodes check
the computation result. During normal operation, Consensus Nodes do not inspect the computa-
tion but oversee that participating nodes execute their tasks with due diligence and adjudicate
potential result challenges. While the architecture can significantly increase throughput, Verifi-
cation Nodes still have to duplicate the computation fully.

In this paper, we refine the architecture such that result verification is distributed and paral-
lelized across many Verification Nodes. The full architecture significantly increases throughput
and delegates the computation work to the specialized Execution Nodes and the onus of check-
ing it to a variety of less powerful Verification Nodes. We provide a full protocol specification
of the verification process, including challenges to faulty computation results and the resulting
adjudication process. Furthermore, we formally prove liveness and safety of the system.

1

ar
X

iv
:1

90
9.

05
83

2v
1

 [
cs

.D
C

]
 1

2
Se

p
20

19

Contents

1 Flow Architecture 3
1.1 Roles . 5

1.1.1 Collector Role . 5
1.1.2 Consensus Role . 6
1.1.3 Execution Role . 8
1.1.4 Verification Role . 8
1.1.5 Observer Role . 9

1.2 Locality of Information . 9
1.3 Computational State vs. Network Infrastructure State 9

1.3.1 Staking and Slashing . 9

2 General Techniques 10
2.1 Specialized Proof of Confidential Knowledge . 10

3 Transaction Processing Flow 12
3.1 Collector Role: Batching Transactions into Collections 13
3.2 Consensus Role: Linearizing Computation into Blocks 13
3.3 Execution Role: Computing Transactions in Block 14

3.3.1 Chunking for Parallelized Verification . 14
3.3.2 The Execution Receipt . 16

3.4 Verification Role: Checking Execution Result . 17
3.4.1 Self-selecting chunks for verification . 17
3.4.2 Verifying chunks . 19

3.5 Consensus Role: Sealing Computation Result . 21
3.6 Proof of Computational Correctness . 23
3.7 Computational Load on Verification Nodes . 25

4 Mitigation of Attack Vectors 26
4.1 Adjudicating with Faulty Computation Results . 26
4.2 Resolving a Missing Collection . 29
4.3 Placing errors in chunks checked by colluding Verifier Nodes 32

Acknowledgments 34

References 34

2

1 Flow Architecture

In most traditional blockchains, each full node must perform every task associated with running
the system. This process is akin to single-cycle microprocessors, where one instruction is executed
per step. In contrast, modern CPU design leverages pipelining to achieve higher throughput and
scaling.

Rather than asking every node to choose the transactions they will include in a block, compute
the block’s output, come to a consensus on the output of those transactions with their peers, and
finally sign the block, appending it onto the chain, Flow adopts a pipelined architecture. In Flow,
different tasks are assigned to specialized node roles: Collection, Consensus, Execution, Verification,
and Observation. This design allows high levels of participation in Consensus and Verification by
individuals on home internet connections while leveraging large-scale datacenters to do most of
the heavy lifting of Execution. Actors participating in Consensus and Verification hold the other
nodes accountable with crypto-economic incentives allowing Flow to gain massive throughput im-
provements without undermining the decentralization or safety of the network. In a system with
Consensus and Execution nodes only, Flow achieved a throughput increase by a factor of 56 compared
to architectures where consensus nodes also perform block computation [1].

In any design where actors other than the consensus nodes perform tasks, correct task execution is
not covered by the safety guarantees of consensus. Therefore, the protocol must include dedicated
components to ensure secure system operation, even in the presence of a moderate number of
malicious participants. In our first white paper [1], we formally analyzed the security implications
of delegating tasks to other actors than Consensus Nodes. The central result of our research was
that transaction execution can be transferred to one group of nodes (Execution Nodes), and result
verification to an independent group (Verification Nodes). The protocol must include the following
components to ensure safety:

• The Verifiers must be able to appeal (formally: submit a challenge) to Consensus Nodes if they
detect a protocol violation.

• Consensus Nodes must have the means to determine whether the challenger or the challenged
is correct (formally: adjudicate the challenge).

When such mechanisms are included, the pipelined architecture is as secure as a blockchain where all
tasks are executed by all consensus nodes [1]. In the present paper, we refine the architecture such
that result verification is distributed and parallelized across many Verification Nodes. Furthermore,
we specify the details of the different challenges and adjudication protocols for execution verification.

Core Architecture Principles

Above, we noted that nodes must be able to appeal to Consensus Nodes if they detect a protocol
violation. For an appeal system to provide security guarantees that protect from Byzantine attacks,
the system must have the following attributes.

• Detectable: A single, honest actor in the network can detect deterministic faults, and prove
the error to all other honest nodes by asking them to recreate part of the process that was
executed incorrectly.

• Attributable: All deterministic processes in Flow are assigned to nodes using a verifiable random
function (VRF) [2]. Any detected error can be attributed to the nodes responsible for that
process.

3

• Punishable: Every node participating in the Flow network must put up a stake, which is
slashed in case the node is found to exhibit Byzantine behavior. Reliably punishing errors
via slashing is possible because all errors in deterministic processes are detectable1 and at-
tributable.

• Recoverable: The Flow protocol contains specific elements for result verification and resolution
of potential challenges. These elements serves to deter malicious actors from attempting to
induce errors that benefit them more than the slashing penalty, as the probability of their
erroneous result being committed is negligible.

Assumptions

• We solely focus on Proof of Stake blockchains, where all participants are known and each node
is authenticatable through its signature.

• Nodes commit to (and stake for) participating in the network for a specific time interval, which
we refer to as an Epoch. Epochs are system-wide. While nodes can participate over multiple
Epochs, the end of an Epoch is a dedicated point in time for nodes to leave or join the system.
Epochs are considered to last for about a week. Technical details for determining the length
of an Epoch and a mechanism for Epoch changeover are left for future publications. In this
paper, we consider the system running only within one epoch.

Furthermore, we assume
• The existence of a reliable source of randomness that can be used for seeing pseudo-random

number generators. We require the random seed to be unpredictable by any individual node
until the seed itself is generated and published. Possible solutions include Dfinity’s Random
Beacon [3] or proof-of-delay based systems [4].

• An aggregatable, non-interactive signature scheme, such as BLS signatures [5].
• Adequate compensation and slashing mechanics to incentivize nodes to comply with the pro-

tocol.
• Partially synchronous network conditions with message traversal time bounded by ∆t. Fur-

thermore, we assume that local computation time is negligible compared to message traversal
time.

• In numerous places throughout this paper, we refer to fractions of nodes. This is a short-form
of referring to a set of nodes which hold the respective fraction of stake. Formally, let N (r) be
the set of all nodes with role r and sα the stake of node α ∈ N (r). A fraction of at least κ
nodes (with role r) refers to any subset

Ñ ⊆ N (r) such that
∑
α̃∈Ñ

sα ≥ κ
∑

α∈N (r)

sα, (1)

for 0 ≤ κ ≤ 1. For example, stating that “more than 2
3 of Consensus Nodes have approved

of a block” implies that the approving nodes hold more than κ = 2
3 of the Consensus Nodes’

accumulated stake.

1In Flow, nodes check protocol-compliant behavior of other nodes by re-executing their work. In most cases, verifica-
tion is computationally cheap, with the noticeable exception of computing all transactions in a block. We describe
in section 3.4 how verifying the block computation is distributed and parallelized such that each Verifier only has
to perform a small fraction of the overall block computation.

4

1.1 Roles

Roles are a service a node can provide to the network. These are: Collector Role, Consensus Role,
Execution Role, Verification Role, and Observer Role. We refer to a network node that performs the
respective role as Collector Node, Consensus Node, etc. From an infrastructure perspective, the same
hardware can host multiple roles in the network. However, the network treats individual roles as
if they are independent nodes. Specifically, for each role a node stakes, unstakes, and is slashed
independently. We furthermore assume that a node has it’s own independent staking key for each
of its roles, even if all roles are hosted on the same hardware. Figure 1 illustrates the messages
which nodes of the individual roles exchange during normal operation.

1.1.1 Collector Role

The central task of Collector Role is to receive transaction submissions from external clients and
introduce them to the network. Staked nodes are compensated through transaction fees and all
roles require a minimum stake to formally participate in that role. When receiving a transaction,
a Collector Node checks that the transaction is well-formed. By signing the transaction, the node
guarantees to store it until the transaction’s result has been sealed. (For details on block sealing,
see section 3.5.)

Clusters: For the purpose of load-balancing, redundancy, and Byzantine resilience, Collection Nodes
are partitioned into clusters. We require that Collection Nodes are staked equally. At the begin-
ning of an Epoch, each Collection Node is assigned to exactly one cluster. Cluster assignment is
randomized using the random beacon output.

Collections: The central task of Collector Nodes is to collect well-formed transactions from external
clients and to batch them into collections. When a Collector Node sees a well-formed transaction,
it hashes the text of that transaction and signs the transaction to indicate two things: first, that it
is well-formed, and second, that it will commit to storing the transaction text until the Execution
Nodes have finished processing it. By signing it, the Collector Node guarantees the transaction’s
storage and will subsequently be slashed (along with the rest of the cluster) if it doesn’t produce
the transaction.

User Agent

Collectors

Consensus

ExecutorsVerifiers

Guraranteed Collections

Transaction

R
es

ul
t A

pp
ro

va
l Finalized B

lock

Execution Receipts

Figure 1: Overview of the node roles and messages they exchange. For simplicity, only the messages during
normal operation are shown. Messages that are exchanged during the adjudication of slashing requests are omitted.

5

Collector nodes share all well-formed transactions they receive among their cluster and collab-
orate to form a joint collection of transactions. A cluster forms collections one at a time. Before a
new collection is started, the current one is closed and send off to the Consensus Nodes for inclusion
in a block. Further details on collections are provided in section 3.1.

Collector Nodes in one cluster must agree on the transactions included in the current collection
and at what point to close the collection. The determination of when to close a collection is based on
a number of factors including token economics, which is out of scope for this paper. This distributed
agreement requires the nodes to run a consensus algorithm. Fortunately, the number of nodes in a
cluster and the transaction volume to processed by one cluster is moderate2. Therefore, established
BFT consensus algorithms, such as Tendermint [6, 7, 8], SBFT [9], or Hot-Stuff [10], are fully
sufficient.

Security implication: As there are relatively few collectors in each cluster, a cluster may be com-
promised by malicious actors. The cluster could withhold the collection content that is referenced in
a block but whose execution is still pending. The mitigation strategy (Missing Collection Challenge)
for this attack is described in section 4.2.

1.1.2 Consensus Role

The Consensus Node’s central tasks are the following:
Block Formation: Consensus Nodes form blocks from the collections. Essentially, Consensus Nodes
maintain and extend the core Flow blockchain. In Flow, a block defines the transactions as well as
the other inputs (incl. the random seed) required to execute the computation, but not the resulting
computational state after block execution.

An agreement to accept a proposed block needs to be reached by many nodes which requires a
Byzantine-Fault-Tolerant (BFT) consensus algorithm [11, 12]. While the specific design of the Flow’s
consensus system is still subject to active research, we restrict the design space to algorithms with
the following guarantees.

• The algorithm is proven BFT, i.e., it maintains consistency among honest participants, as
long as less than one-third of Consensus Nodes are Byzantine.

• Safety is guaranteed even in cases of network asynchrony. Per definition of safety [13, 14],
Consensus Nodes might declare a block finalized at different points in time, depending on
the amount of information they gathered from other Consensus Nodes. Nevertheless, a safe
consensus algorithm guarantees that all honest nodes eventually will declare the same block
as finalized.

• Liveness is guaranteed in partially synchronous network conditions [15]. As the Fischer-
Lynch-Paterson (FLP) theorem states, a fault-tolerant, distributed consensus system cannot
guarantee safety and liveness at the same time under asynchronous network conditions [16].
For Flow, we prioritize safety over liveness in case of a network split. Consistency of the
world-state is more important than forward-progress of the network in extremely rare and
adverse circumstances of a large-scale network split.

2 For the mature system, we anticipate on the order of 20 to 50 nodes per cluster.

6

B1

B1

B2

B2

B Bk n

Execution of B1 Verification of B1

Execution of B2 Verification of B2

ER

ER

2/3 RA

2/3 RA

finalized B1

Time
(Blocks)

finalized B
seal B1

k finalized B
seal B2

n

Bk Bn

blocks

processes

messages

Figure 2: Illustration of the placement of Block Seals within the Flow blockchain. After block B1 is finalized
by the Consensus Nodes, the Execution Nodes process their transactions and issue Execution Receipts (see section
3.3), which are subsequently checked by the Verifier Nodes (see section 3.4). Provided that the checked parts of
the computation result are found valid, a Verifier sends a Result Approval back to the Consensus Nodes. As soon as
conditions for sealing block B1 are satisfied (see section 3.5), the seal for the computation result of block B1 is included
in the next block Bk that is generated by the Consensus Nodes.

• A desired core feature of Flow’s consensus algorithm is deterministic finality. Once a block
is finalized by any Consensus Node, this commitment will never3 be changed. Deterministic
finality provides the significant advantage that dapp developers do not have to deal with the
effects of chain reorganizations.

• Sustainability : we do not consider proof-of-work consensus systems due to their exorbitant
energy consumption. We focus on Proof of Stake systems only, where computational costs are
reduced to necessary elements: primarily cryptography and book-keeping.

Block Sealing: After a block has been computed and the resulting computational state verified,
the Consensus Nodes publish a Block Seal for the respective block. A Block Seal contains a com-
mitment to the resulting computational state after block execution. Furthermore, it proves that the
computation has been verified by a super-majority of Verifier Nodes.

Consensus Nodes publish the block seals as part of the new blocks they finalize. As executing a
block’s transactions follows its finalization, the seal for the block’s computational result cannot be
included in the block itself. Instead, the seal is included in a later block. An illustration is shown
in Figure 2.

Tracking Staked Nodes: Consensus Nodes maintain a table of staked nodes including the nodes’
current stakes and their public keys. It is important to note that staking balances are tracked solely
by the Consensus Nodes and are not part of the computational state. Whenever a node’s stake

3 Deterministic finality is guaranteed via BFT consensus, unless the system is under active attack of at least one-third
of Byzantine actors.

7

changes, Consensus Nodes publish this update as part of their next finalized block.
During normal operations, staking and unstaking can only take place at the switchover from

one Epoch to the next. However, involuntary changes of stake through slashing can occur within
an epoch and are accounted for by all honest nodes as soon as they process the block containing
the respective stake update.

Slashing: Consensus Nodes adjudicate slashing challenges and adjust the staking balances accord-
ingly.

Security implication: The consensus committee is the central authority in the system. The
consensus committee itself must adjudicated challenges against committee members. Safety and
liveness are of this process are guaranteed through the BFT consensus algorithm. Flow uses a
consensus algorithm with deterministic finality. Therefore, dapp developers do not have to deal
with the additional complexity of chain reorganization. Our results hold for any BFT consensus
algorithm with deterministic finality. HotStuff [10, 17] is the leading contender. However, we
continue to assess other algorithms such as Casper CBC [18, 19, 20] or Fantômette [21].

1.1.3 Execution Role

Execution Nodes compute the outputs of all finalized blocks they are provided. They then ask the
Collector Nodes for the collections containing transaction that are to be executed. With this data
they execute the block and publish the resulting computational state as an Execution Receipt. For
verification, the computation is broken up into chunks. The Execution Nodes publish additional
information (see section 3.3) in the Execution Receipt about each chunk to enable Verification Nodes
to check chunks independently and in parallel.

The Computation Nodes are primarily responsible for Flow’s improvements in scale and efficiency
because only a very small number of these powerful compute resources are required to compute and
store the canonical state.

Security implication: Malicious Execution Nodes could publish faulty Execution Receipts. The
protocol for detecting incorrect execution results is covered in section 3.4 and the adjudication
process for the challenges in section 4.1.

1.1.4 Verification Role

Verification Nodes check the computation from the Execution Nodes. While each node only checks
a small number of chunks, all Verification Nodes together will check all chunks with overwhelming
probability. For each chunk, a Verification Node publishes a Result Approval, provided it agrees with
the result. The Execution Receipt and the Result Approval are required for the block to be sealed.

Security implication: Like most blockchains, Flow has to address the Verifier’s Dilemma [22]. In
a system where workers are producing results and Verifiers are confirming result correctness, there
is an incentive for Verifiers to approve results without expending the work of checking. This conflict
of incentives is at the heart of the Verifier’s Dilemma. It persists even the worker and Verifiers
are not colluding, so additional Verifiers do not help. For Flow, we developed Specialized Proofs
of Confidential Knowledge (section 2.1) to overcome the Verifier’s Dilemma (section 3.4.2 for more
details).

8

1.1.5 Observer Role

Observer Nodes relay data to protocol-external entities that are not participating directly in the
protocol themselves.

1.2 Locality of Information

• Correctness of information is cryptographically verifiable using on-chain information
• Flow blockchain is, from a data perspective, not self-contained. For example, cryptographic

hashes of the computational state are included in blocks, but the state itself is not. This
implies that anyone can verify the integrity of any subset of the computational state using
the hashes in the Flow blockchain (and merkle proofs which must be provided alongside the
actual data). However, it is impossible to extract the state itself from the core blockchain.

• Computational state is local to Execution Nodes
• Reference to the information holder is guaranteed by the holder’s signature

1.3 Computational State vs. Network Infrastructure State

An important conceptual difference in Flow is handling information that pertains to the computa-
tional state vs. that of the network infrastructure itself. While the computational state is held by
the Execution Nodes, the network’s infrastructure state is maintained by the Consensus Nodes.

To illustrate the difference, consider the situation where the nodes in the network do not change
(nodes never leave, join, or change stake). However, the transactions executed by the system will
modify register values, deploy smart contracts, etc. In this setting, only the computational state
changes. Its integrity is protected by the verification process (see section 3.4 for details).

In contrast, let us now consider a situation where no transactions are submitted to the system.
Blocks are still produced but contain no transactions. In this case, the system’s computational
state remains constant. However, when nodes leave or join, the state of the network infrastructure
changes. The integrity of the network state is protected by the consensus protocol. To modify it,
more than 2/3 of Consensus Nodes must approve it.

1.3.1 Staking and Slashing

The network state itself contains primarily a list of all staked nodes which contains the node’s
staking amount and its public staking key. Updates to the network state are relevant for all nodes
in the network. Hence, Consensus Nodes publish updates directly as part of the blocks they produce.
Furthermore, slashing challenges are directly submitted to Consensus Nodes for adjudication. (For
example, section 4.1 provides a detailed protocol for challenging execution results.) As Consensus
Nodes maintain the network state, including staking balances, they can directly slash the stake of
misbehaving nodes, without relying on Execution Nodes to update balances.

9

2 General Techniques

In this section, we describe methods and techniques used across different node roles.

2.1 Specialized Proof of Confidential Knowledge (SPoCK)

A SPoCK allows any number of provers to demonstrate that they have the same confidential knowl-
edge (secret ζ). The cryptographic proof does not leak information about the secret. Each prover’s
SPoCK is specialized to them, and can not be copied or forged without possession of the secret.

The SPoCK protocol is used in Flow to circumvent the Verifier’s Dilemma [22] (section 3.4.2).
The protocol prevents Execution or Verification Nodes from copying Execution Results or Result
Approvals from each other. Thereby, actors cannot be compensated for work they didn’t complete in
time. In Flow, the secret ζ is derived from the execution trace of the low-level execution environment
(e.g., the virtual machine). Executing the entire computation is the cheapest way to create the
execution trace, even when the final output of computation is known.

Formally, the SPoCK protocol provides two central guarantees:
1. An arbitrary number of parties can prove that they have knowledge of a shared secret ζ

without revealing the secret itself.
2. The proofs can be full revealed, in an arbitrary order, without allowing any additional party

to pretend knowledge of ζ.
The SPoCK protocol works as follows.

• Consider a normal blockchain that has a transition function t() where S′ = t(B,S), with B
being a block of transactions that modify the world state, S as the state before processing
the block, and S′ as the state after. We create a new function t̃() that works the same way,
but has an additional secret output ζ, such that (S′, ζ) = t̃(B,S) for the same S, S′, and
B as t(). The additional output, ζ, is a value deterministically derived from performing the
computation, like a hash of the CPU registers at each execution step, which can’t be derived
any more cheaply than by re-executing the entire computation. We can assume the set of
possible values for ζ is very large.

• An Execution Node, Alice, publishes a signed attestation to S′ (a merkle root of some sort),
and responds to queries about values in S′ with merkle proofs. Additionally it publishes a
SPoCK derived from ζ.

• A Verifier Node, Bob verifies that S′ is an accurate application of t(B,S), and also publishes
its own SPoCK of ζ.

• An observer can confirm that both SPoCKs are derived from the same ζ, and assume that Bob
actually verified the output with high probability4 and didn’t just “rubber stamp” the result.
This doesn’t provide any protection in the case where Alice and Bob are actively colluding,
but it does prevent a lazy node from “confirming” a result without actually knowing that it is
correct.

• A SPoCK is created as follows:
– Use ζ (or a cryptographic hash of ζ) as the seed for a deterministic key generation process,

generating a public/private key pair (pk, sk).

4We assume that honest nodes will not accept unproved values for ζ, because they would be slashed if the ζ-value
was incorrect. Therefore, the observer can assume that statistically more than 2

3
of the SPoCKs have been obtained

by truthful re-computation of the respective chunks.

10

– Use the private key sk to sign your public identity (such as a node ID), and publish the
signature along with the deterministically generated public key pk:

SPoCK Z = (pk, signsk(ID)) (2)

All observers can verify the signatures to see that both Alice and Bob must have access to
the private key sk, but the signatures themselves don’t allow recovery of those private keys.
Alice and Bob must both have knowledge of the same underlying secret ζ used to generate
the private key.

In order t seal a block, several SPoCKs have to be validated for each chunk. Benchmarks of our
early BLS implementation indicate that all proofs for sealing a block can be verified on a single
CPU core in the order of a second. Parallelization across multiple CPU cores is straight forward.
Verification time can be further reduced by utilizing vectorized CPU instructions such as AVX-512
or a cryptographic coprocessor.

11

3 Transaction Processing Flow

In this section, we present a formal definition of the transaction processing flow. Figure 3 provides
a high-level overview of the individual stages which we discuss in detail in sections 3.1 – 3.5. For
conciseness and clarity, we focus on the core steps and omit protocol optimizations for conservation
of bandwidth, run-time, etc. In section 3.6, we formulate Theorem 2 which proves that correctness
of a sealed computation result is probabilistically guaranteed even in the presence of Byzantine
actors.

To formally define the messages that nodes exchange, we use Protobuf-inspired5 pseudo-code
[23].

Figure 3: Transaction Processing Flow. The hexagon-shaped boxes indicate the start of the individual stages,
which are discussed in sections 3.1 – 3.5. Arrows show message exchange between nodes with specific roles. Green
boxes represent broadcast operations where the content is relayed to all staked nodes in the network (independent of
their respective roles). White boxes are operations the nodes execute locally.

5Specifically, we use Protobuf with the exception of omitting the field numbers for the sake of conciseness.

12

3.1 Collector Role: Batching Transactions into Collections

As described in section 1.1.1, there are several clusters of collectors, where each cluster maintains
one collection at a time. A cluster may decide to close its collection as long as it is non-empty. As
part of closing the collection, it is signed by the cluster’s collector nodes to indicate their agreement
with the validity of its content and their commitment to storing it, until the block is sealed.

1: message GuaranteedCollection {
2: bytes collectionHash;
3: uint32 clusterIndex;
4: Signature aggregatedCollectorSigs;
5: }

Message 1: Collector Nodes send a
GuaranteedCollection message to Consensus
Nodes to inform them about a guaranteed Collection.
For a collection to be guaranteed, more than 2

3
of

the collectors in the cluster (clusterIndex) must
have signed it. Instead of storing the signatures in-
dividually, aggregatedCollectorSigs is an aggregated
signature.

Definition 1 A Guaranteed Collection is a list of
transactions that is signed by more than 2/3rds of col-
lectors in its cluster. By signing a collection, a Collector
Node attests:

• that all transaction in the collection are well-
formed;

• the collection contains no duplicated transac-
tions;

• to storing the collection including the full texts of
all contained transactions.

A guaranteed collection is considered immutable.
Once a collection is guaranteed by the collectors in its
cluster, its reference is submitted to the Consensus
Nodes for inclusion in a block (see Message 1).

3.2 Consensus Role: Linearizing Computation into Blocks

Consensus nodes receive the GuaranteedCollections from Collector clusters and include them in
blocks through a BFT consensus algorithm outlined in section 1.1.2.

The structure of a finalized block is given in Message 2. The universal fields for forming the
core blockchain are Block.height, Block.previousBlockHash. Furthermore, the block contains a
Block.entropy as a source of entropy, which is generated by the Consensus Nodes’ Random Beacon.
It will be used by nodes that process the block to seed multiple random number generators according
to a predefined publicly-known protocol. In Flow, a reliable and verifiable source of randomness is
essential for the system’s Byzantine resilience.

1: message Block {
2: uint64 height;
3: bytes previousBlockHash;
4: bytes entropy;
5: repeated GuaranteedCollection guaranteedCollections;
6: repeated BlockSeal blockSeals;
7: SlashingChallenges slashingChallenges;
8: NetworkStateUpdates networkStateUpdates;
9: Signature aggregatedConsensusSigs;

10: }

Message 2: Consensus Nodes broadcast Blocks to the entire network. Their Block is valid if and only if more than 2
3

of Consensus Nodes have signed. Instead of storing the signatures individually, we use store an aggregated signature
in signedCollectionHashes.

13

The filed Block.guaranteedCollections specifies the new transactions that are to be exe-
cuted next. During normal operations, Consensus Nodes only require the information provided
by the GuaranteedCollection message. In particular, they work only with the collection hash
(GuaranteedCollection.collectionHash) but do not need to inspect the collection’s transactions
unless an execution result is being challenged.

The blockSeals pertain to previous blocks in the chain whose execution results have just been
sealed. A Block Seal contains a commitment to the resulting computational state after block
execution and proves the computation has been verified by a super-majority of Verifier nodes.
Section 3.5 describes in detail how Consensus Nodes seal blocks.

The fields Block.slashingChallenges and Block.networkStateUpdates are listed for com-
pleteness only. For brevity, we do not formally specify the embedded messages SlashingChallenges
and NetworkStateUpdates. Block.slashingChallenges will list any slashing challenges that have
been submitted to the Consensus Nodes (but not necessarily adjudicated yet by the Consensus
Nodes). Slashing challenges can be submitted by any staked node. Some challenges, such as the
Faulty Computation Challenge discussed in section 4.1), require the challenged node to respond and
supply supplemental information. The filed networkStateUpdates will contain any updates network
infrastructure state (see section 1.3 for details). Most significantly, staking changes due to slashing,
staking and unstaking requests are recorded in this field. By including slashingChallenges and
networkStateUpdates in a Block, their occurrences are persisted in the chain. As all staked nodes
must follow recently finalized blocks to fulfill their respective roles, journaling this information in
the block also serves as a way to publicly broadcast it.

3.3 Execution Role: Computing Transactions in Block

When the Execution Nodes receive a finalized Block, as shown in Message 2, they cache it for
execution. An Execution Node can compute a block once it has the following information.

• The execution result from the previous block must be available, as it serves as the starting
state for the next block. In most cases, an Execution Node has also computed the prior block
and the resulting output state is known. Alternatively, an Execution Node might request the
resulting state from the previous block from a different Execution Node.

• The Execution Node must fetch all collections’ text referenced in the block from the Collector
Nodes.

3.3.1 Chunking for Parallelized Verification

After completing a block’s computation, an Execution Node broadcasts an Execution Receipt to the
Consensus and Verification Nodes. We will discuss the details of the Execution Receipt in more
detail in section 3.3.2. At its core, the Execution Receipt is the Execution Node’s commitment to its
final result. Furthermore, it includes interim results that make it possible to check the parts of the
computation in parallel without re-computing the entire block. The execution result’s correctness
must be verified in a dedicated step to ensure an agreed-upon computational state. At the execution
phase, the block computation is done by compute-optimised nodes. We therefore assume that a
block re-computation by any other node, as part of the independent verification process, will always
be slower. To address the bottleneck concern, we take an approach akin to split parallel verification
[24]. We define the Execution Receipt to be composed of separate chunks, each constructed to be
independently verifiable. A verification process (section 3.4) is defined on a subset of these chunks.

14

By breaking the block computation into separate chunks, we can distribute and parallelize the
execution verification across many nodes. Let us consider a block containing Ξ chunks. Furthermore,
let η be the fraction of chunks in a block that each Verification Node checks. The parameter-value
for η is protocol-generated (see section 3.6 for details).

Number of chunks each Verification Node checks = dη Ξe, (3)

for d·e the ceiling function. A mature system with V Verification Nodes would re-compute in total
Vdη Ξe chunks if all Verification Nodes were to fully participate. Hence, on average, each chunk
is executed Vdη Ξe

Ξ times. For example, a mature system with V = 1000 Verification Nodes could
break up a large block into Ξ = 1000 chunks. With η = 4.2%, each Verification Node would check
dη Ξe = 42 chunks and each chunk would be verified by 42 = Vdη Ξe

Ξ different Verification Nodes
(on average). The redundancy factor of 42 makes the system resilient against Byzantine actors (see
section 3.7).

It is important that there is not single chunk that has a significant increased computation
consumption compared to others in the block. If chunks had vastly different execution time, Verifiers
assigned to check the long-running chunks would likely not be finished before the block is sealed
(see section 3.5). Hence, Execution Nodes could attack the network by targeting the long-running
chunk to introduce a computational inconsistency that is left unverified. This weakness is mitigated
by enforcing chunks with similar computation consumption. Specifically, we introduce the following
system-wide parameters.

ΓTx : upper limit for the computation consumption of one transaction (4)
Γchunk : upper limit for the computation consumption of all transactions in one chunk (5)
with ΓTx � Γchunk (6)

Here, we assume the existence of a measure of computation consumption similar to gas in Ethereum.
Since there is a hard limit of computation consumption both on a transaction as well as a chunk,

with the chunk’s being significantly higher than the transaction’s, the simple greedy Algorithm 1 will
achieve the goal of similar computational consumption. Formally, let Γchunk = n · ΓTx , for n ≥ 1.
Then, all chunks, except for the last one, will have a computation consumption c with the following
properties.

• (n − 1)ΓTx < c. If this was not the case, i.e., c ≤ (n − 1)ΓTx , Algorithm 1 would add more
transactions to the current chunk (line 6), as the computation consumption for transactions
is upper-bounded by ΓTx .

• c ≤ nΓTx , which is guaranteed by Algorithm 1, line 6.
Hence, all chunks, except for the last one, will have a computation consumption c

(1− 1
n)Γchunk < c ≤ Γchunk . (7)

Choosing n large enough guarantees that all but the last chunk have similar computation consump-
tion.

The last chunk could contain as little as a single transaction. Hence, its computation consump-
tion cLastChunk could take any value 0 < cLastChunk ≤ Γchunk . As opposed to (1− 1/n)Γchunk < c for any
other chunk in the block. The last chunk being significantly smaller than (1 − 1/n)Γchunk does not
pose a problem for the following reason. For example, consider a node participating in a network

15

Algorithm 1 Chunking
Input:
T : List; element T [i] is computation consumption of transaction with index i in current block

Output:
C: List; element (k, c) ≡ C[i] represents chunk with index i in current block; k is index of first

transaction in chunk; c is chunk’s computation consumption
1: Chunking(T)
2: C ← [] . initialize C as empty list
3: c← 0 . computation consumption of current chunk
4: k ← 0 . start index of current chunk
5: for i = 0, 1, . . . , length(T)− 1:
6: if c+ T [i] > Γchunk : . adding transaction with index i would overflow chunk
7: e← (k, c) . complete current chunk without transaction i
8: C.append(e)
9: k ← i . start next chunk at transaction i

10: c← T [i]
11: else: . current chunk computation consumption of current chunk
12: c← c+ T [i]
13: e← (k, c) . complete last chunk
14: C.append(e)
15: return C
Algorithm 1: separates transactions in a block into chunks. The algorithm presumes that computation consumption
T [i] ≤ ΓTx for all i.

that can process blocks with up to Ξ = 1000 chunks. For η = 4.2%, a node would be required to
have the capacity to process up to 42 chunks per block (as outlined above). Hence, for each block
with Ξ′ ≤ 42, an honest Verifier would simply check the entire block. For blocks with more chunks,
the workload is failry uniform across all Verifiers, even though each Verifier samples a subset of
chunks for verification. This is because the large majority of all chunks have fairly comparable
computation consumption as derived in equation (7).

3.3.2 The Execution Receipt

As Message 3 shows, the Execution Receipt is a signed ExecutionResult, which provides au-
thentication of the sender and guarantees integrity of the message. The ExecutionResult en-
capsulates the Execution Node’s commitments to both its interim and final results. Specifically,
it contains a reference, ExecutionResult.blockHash, to the block whose result it contains and
ExecutionResult.finalState as a commitment6 to the resulting state.

Consider the situation where an Execution Node truthfully computed a block but used the
computational state from a faulty Execution Receipt as input. While the node’s output will likely
propagate the error, it is important to attribute the error to the malicious node that originally intro-
duced it and slash the malicious node. To ensure attributability of errors, ExecutionResults specify
6We don’t specify details of the StateCommitment here. It could either be the full state (which is likely much too
large for a mature system). Alternatively, StateCommitment could be the output of a hashing algorithm, such as
Merkle Patricia Trie used by Etherum [25].

16

the computation result they built on top of as ExecutionResult.previousExecutionResultHash.
As we will show later in section 3.6, a faulty computation result will be rejected with overwhelming
probability.

1: message Chunk {
2: StateCommitment startState;
3: float τ0;
4: uint32 startingTransactionIndex;
5: float computationConsumption;
6: }

1: message ExecutionResult {
2: bytes blockHash;
3: bytes previousExecutionResultHash;
4: repeated Chunk chunks;
5: StateCommitment finalState;
6: }

1: message ExecutionReceipt {
2: ExecutionResult executionResult;
3: repeated SPoCK Zs;
4: bytes executorSig;
5: }

Message 3: Execution Nodes broadcast an
ExecutionReceipt to the entire network after comput-
ing a block.

Lastly, the ExecutionResult.chunks contains
the Execution Node’s result of running the Chunking
algorithm (Chunk.startingTransactionIndex and
Chunk.computationConsumption). Also, a Chunk
states the starting state (Chunk.startState) for the
computation and the computation consumption for
the first transaction in the chunk (Chunk.τ0)

Solving the Verifier’s Dilemma

The field ExecutionReceipt.Zs is a list of SPoCKs
which is generated based on interim states from com-
puting the chunks. Formally, for the i th chunk
VerificationProof.Zs[i] holds the SPoCK demon-
strating knowledge of the secret derived from exe-
cuting the chunk. As explained in section 3.4.2, the
SPoCK is required to resolve the Verifier’s Dilemma
in Flow. Furthermore, it prevents Execution Nodes
from copying ExecutionResult from each other, pre-
tending their computation is faster than it is.

Given that there are several Execution Nodes, it
is likely that multiple Execution Receipts are issued
for the same block. We define consistency of Execu-
tion Receipts as follows.

Definition 2 Consistency Property of Execution Receipts
Execution Receipts are consistent if and only if

1. their ExecutionResults are identical and
2. their SPoCKs attest to the same confidential knowledge.

3.4 Verification Role: Checking Execution Result

The verification process is designed to probabilistically guarantee safety of the computation result
(see page 23, Theorem 2). A crucial aspect for the computational safety is that Verification Nodes
verifiably self-select the chunks they check independently from each other. This process is described
in the section below. In section 3.4.2, we describe how the selected chunks are verified.

3.4.1 Self-selecting chunks for verification

The protocol by which Verification Nodes self-select their chunks is given in Algorithm 2. While
inspired by Algorand’s random sortition [26], it has significantly reduced complexity.

17

Algorithm 2 ChunkSelfSelection
Input:
η: fraction of chunks to be checked by a Verification Node
er: Execution Receipt
sk: Verifier Node’s secret key

Output:
L: List of chunk indices that are assigned to the Verifier
p: proof of protocol-compliant selection

1: ChunkSelfSelection(η, er, sk)
2: chunks← er.executionResult.chunks . list of chunks from Execution Receipt
3: Ξ← length(chunks) . number of chunks in the block
4: p← signsk(er.executionResult) . sign Execution Receipt’s ExecutionResult
5: seed← hash(p) . use signature’s hash as random number generator seed
6: n← dη · Ξe . number of chunks for verification
7: L← FisherYatesShuffle(chunks, seed, n) . generate random permutation of chunks
8: return L, p

Algorithm 2: randomly selects chunks for subsequent verification. In line 6, d·e is the ceiling operator. The function
FisherYatesShuffle(list, seed, n) draws a simple random sample without replacement from the input list. The seed is
used for initializing the pseudo-random-number generator.

ChunkSelfSelection has the following crucial properties.
(1) Verifiability. The seed for the random selection of the chunks is generated in lines 4 – 5. Given

the ExecutionReceipt, the Verifier’s public key, and the proof p, any other party can confirm
that p was generated according to protocol. Moreover, given p, anyone can re-compute the
Verifier’s expected chunk assignment. Thereby, the chunk-selection protocol is verifiable and
deviating from the protocol is detectable, attributable, and punishable.

(2) Independence. Each Verifier samples its chunks locally and independently from all the other
Verifiers.

(3) Unpredictability. Without knowledge of the Verifier’s secret key sk, it is computationally
infeasible to predict the sample. Formally, the computation of seed can be considered a
verifiable random function [2].

(4) Uniformity. A Verifier uses Fisher-Yates shuffling [27, 28] to self-select the chunks it checks.
The Fisher-Yates algorithm’s pseudo-random number generator is seeded with the output of a
cryptographic hash function. The uniformity of the seed and the uniformity of the shuffling
algorithm together guarantee the uniformity of the generated chunk selection.

Corollary 1
Algorithm 2 samples a subset of dη · Ξe chunks, for Ξ the number of chunks in the block and η the
fraction of chunks to be checked by each Verification Node. The selection probability uniform and
independently and identically distributed (i.i.d.) for all Verifiers. The sample is unpredictable without
the Verification Node’s secret key.

Independence and unpredictability are crucial for the system’s security. A selection protocol without
these properties might be abused by a malicious Execution Node (see section 4.3 for a detailed
discussion).

18

Algorithm 3 ChunkVerification
Input: Λ: starting state for computing the chunk

Txs: List of transactions in chunk
τ0: computation consumption of leading transaction in this chunk
Λ′: resulting state after computing the chunk as stated in the Execution Receipt
τ ′0: computation consumption of leading transaction in next chunk;

or ∞ if this is the last chunk in the block
c: chunk’s computation consumption as stated in the Execution Receipt

Output: true: if and only if chunk passes verification
1: ChunkVerification(Λ, Txs, Λ′, ntx, c)
2: γ ← 0 . accumulated computation consumption
3: for t in Txs: . for each transaction in chunk
4: Λ, τ ← execute(Λ, t) . execute transaction
5: if t is first transaction in chunk:
6: assert that τ0 == τ . computation consumption for first transaction in chunk is correct
7: γ ← γ + τ . add transaction’s computation consumption to γ

8: assert that γ == c . computation consumption for entire chunk is correct
9: assert that c ≤ Γchunk . computation consumption does not exceed limit

10: assert that c+ τ ′0 > Γchunk . chunk is full: no more translations can be appended to chunk
11: assert that Λ == Λ′ . verify Execution Node’s resulting state
12: return true

Algorithm 3: verifies a chunk. The function execute(Λ, t) applies the transaction t to the computational state Λ and
returns a pair of values: the resulting state (first return value) and transaction’s computation consumption (second
return value). The assert statement raises an exception if the condition is false.

Our approach to independent verification of chunks has similarities with traditional acceptance
sampling theory [24, 29, 30], yet differs as our model assumptions are different. In contrast to
traditional acceptance sampling, where physical items are tested, identical copies of our digital
chunks can be checked in parallel by multiple Verifiers. Part of the novelty of our approach is that
we elevate an acceptance sampling model with parallel sampling.

3.4.2 Verifying chunks

The verification protocol is designed to be self-contained, meaning any Execution Receipt can be veri-
fied in isolation. All required data is specified through the hashes in the execution receipt. Checking
the correctness of a chunk requires re-computing the transactions in the chunk. The details of the
verification protocol are given in Algorithm 3. The inputs τ0 and τ ′0 for the ChunkVerification
algorithm are taken directly from the Execution Receipt. Λ, Txs, and Λ′, have to be fetched from
the Execution Nodes and checked to match the Execution Receipt (specifically: Λ, Λ′) or the original
block (specifically: Txs) via hashing7. Therefore, errors uncovered by the verification process can
be attributed to the data provider and slashed.

The verification process is also given enforcement power, as we enable it to request slashing

7We use the term ‘hashing’ here to refer to the one-time application of a conventional hash function as well as iterative
hashing schemes such as Merkle trees or Merkle Patricia trie.

19

1: message CorrectnessAttestation {
2: bytes executionResultHash; . Hash of approved ExecutionResult

3: bytes attestationSig; . Signature over executionResultHash
4: }
1: message VerificationProof {
2: repeated uint32 L; . list of chunk indices assigned to verifer
3: bytes p; . proof to verify correctness of chunk assignment
4: repeated SPoCK Zs; . for each assigned chunk: proof of re-computation
5: }
1: message ResultApproval {
2: CorrectnessAttestation attestation;
3: VerificationProof verificationProof;
4: bytes verifierSig; . signature over all the above fields
5: }

Message 4: Verification Nodes broadcast a ResultApproval to all Consensus Nodes if all their assigned chunks pass
verification.

against an Execution Node. A successful verification process results in a ResultApproval (Mes-
sage 4) being broadcast by the Verifier to all Consensus Nodes. It is important to note that
a ResultApproval (specifically ResultApproval.attestation) attests to the correctness of an
ExecutionResult. Specifically, in CorrectnessAttestation, the Verifier signs the ExecutionResult,
not the Execution Receipt. Per definition 2, multiple consistent Execution Receipts have identical
ExecutionResults. Hence, their correctness is simultaneously attested to by a single ResultApproval
message. This saves communication bandwidth, as each Verifier Node issues only one ResultApproval
for the common case that several Execution Nodes publish the same results by issuing consistent
Execution Receipts.

The second important component is the ResultApproval.verificationProof, which proves
that the Verification Node completed the assigned verification tasks. We designed this protocol
component to address the Verifier’s Dilemma [22]. It prevents the Verifier from just approving
ExecutionReceipts, betting on honesty of the Execution Nodes, and thereby being compensated for
work the Vertifier didn’t do. The field VerificationProof.L specifies the chunk indices the Verifier
has selected by running ChunkSelfSelection (Algorithm 2). As detailed in section 3.4.1 (property
(1) Verifiability), protocol-compliant chunk selection is proven by VerificationProof.p, which
holds the value for p returned by ChunkSelfSelection. The list VerificationProof.Zs contains
for each assigned chunk a proof of verification. Formally, for each i ∈ VerificationProof.L,
VerificationProof.Zs[i] holds a SPoCK.

Each Verifier samples the chunks it checks independently (property (2)). Furthermore, statisti-
cally each chunk is checked by a larger number of nodes (e.g., on the order of 40 as suggested in
section 3.7) Therefore, with overwhelming probability, all chunks are checked. (We formalize this
argument in Theorem 2).

20

3.5 Consensus Role: Sealing Computation Result

Sealing a block’s computation result happens after the block itself is already finalized. Once the
computation results have been broadcast as Execution Receipts, Consensus Nodes wait for the
ExecutionResults to accumulate matching Results Approvals. Only after a super-majority of Ver-
ifier Nodes approved the result and no FaultyComputationChallenge has been submitted (see
section 4.1 for details), the ExecutionResult is considered for sealing by the Consensus Nodes.
The content of a BlockSeal is given in Message 5. Algorithm 4 specifies the full set of conditions
a BlockSeal must satisfy. Algorithm 4 enforces a specific structure in our blockchain which is
illustrated in Figure 4.

Once a Consensus Node finds that all conditions are valid, it incorporates the BlockSeal as an
element of Block.blockSeals into the next Block it proposes. All honest Consensus Nodes will
check the validity of the BlockSeal as part of verifying the Block, before voting for it. Thereby
the validity of a BlockSeal is guaranteed by the BFT consensus algorithm. Furthermore, condition
(8) guarantees that any FaultyComputationChallenge has been received before the block is sealed.
This gives rise to the following corollary:

Corollary 2
Given a system with partially synchronous network conditions with message traversal time bounded by
∆t. A Block is only sealed if more than 2

3 of Verification Nodes approved the ExecutionResult and no
FaultyComputationChallenge was submitted and adjudicated with the result that the ExecutionResult
is faulty.

Latest sealed
block

Seal 𝛽 of
highest sealed block

Candidate
seal 𝛽

Next block
to seal

1. Link to previous
ExecutionResult

3. B’s computational output state must
match starting state for B

2. Blocks referenced by
ExecutionResults are chained

The 3 conditions for a new BlockSeal

^

𝛽.blockHash
^

𝛽.blockHash

BB ^

^

Figure 4: Validity conditions for a new BlockSeal according to Algorithm 4.

21

1: message BlockSeal {
2: bytes blockHash;
3: bytes executionResultHash;
4: bytes executorSigs; . Signatures from Execution Nodes over ExecutionResult
5: bytes attestationSigs; . Signatures from Verification Nodes approving the ExecutionResult

6: bytes proofOfWaiting; . output of VDF to prove waiting for a FaultyComputationChallenge

7: }

Message 5: In order to seal a block (with hash blockHash), Consensus Nodes add a BlockSeal to the next block (field
Block.blockSeals) they finalize. The field executorSigs is the aggregated signature of at least one Execution Node
that published an Execution Receipt with a compatible ExecutionResult. Their BlockSeal is valid only if more than 2

3
of Verifier Nodes have signed. Instead of storing the signatures individually, we use store an aggregated signature in
attestationSigs.

Algorithm 4 Validity of Block Seal
Let β be the (accepted) BlockSeal for the highest sealed block, i.e., β is contained in a finalized
block. A candidate BlockSeal β̂ must satisfy the following conditions to be valid.
(1) β̂.executionResult.previousExecutionResultHash must be equal to

β.executionResultHash
(2) Let

• B be the block whose result is sealed by β, i.e., B is referenced by β.blockHash;
• B̂ be the block whose result is sealed by β̂, i.e., B̂ is referenced by β̂.blockHash.

B̂.previousBlockHash must reference B.
(3) Let

• E be the ExecutionResult that referenced (sealed) by β.executionResultHash;
• Ê be the ExecutionResult that is referenced by β̂.executionResultHash.

The starting state for computing B̂ must match the B computational output state, i.e.,

Ê.chunks[0].startState == E.finalState

(4) β̂.attestationSigs must contain more than 2
3 of Verifier Nodes’ signatures

(5) For each Verifier who contributed to β̂.attestationSigs, the VerificationProof has been
validated.

(6) No FaultyComputationChallenge against the ExecutionResult is pending (i.e., not yet adju-
dicated).

(7) No FaultyComputationChallenge against the ExecutionResult was adjudicated with the re-
sult that the ExecutionResult is faulty.

(8) β.proofOfWaiting proves a sufficiently long wait time ∆t

Per axiom, we consider the genesis block as sealed.

Algorithm 4: protocol for determining validity of a BlockSeal. Figure 4 illustrates conditions (1) – (4).

22

3.6 Proof of Computational Correctness

Below, we prove in Theorem 1 that Flow’s computation infrastructure has guaranteed liveness, even
in the presence of a moderate number of Byzantine actors. Furthermore, Theorem 2 proves that
block computation is safe, i.e., the resulting states in sealed blocks are correct with overwhelming
probability. While safety is unconditional on the network conditions, liveness requires a partially
synchronous network.

Theorem 1 Computational Liveness
Given a system with

• more than 2
3 of the Consensus Nodes’ stake is controlled by honest actors;

• and at least one honest Execution Node;
• and more than 2

3 of the Verification Nodes’ stake is controlled by honest actors;
• and partially synchronous network conditions with message traversal time bounded by ∆t.

The computation and sealing of finalized blocks always progresses.

Proof of Theorem 1
• Assuming liveness of the consensus algorithm, finalization of new blocks always progresses.
• For a system with one honest Execution Node, there is at least one Execution Receipt with a

correct ExecutionResult.
• Every honest Validator will approve a correct ExecutionResult. Hence, there will be Result

Approvals by at least 2
3 of the Verification Nodes.

• Malicious Verifiers might temporarily delay block sealing by raising a FaultyComputation-
Challenge, which triggers condition (6) in Algorithm 4. However, the resolution process
(see section 4.1 for details) guarantees that the FaultyComputationChallenge is eventually
adjudicated and malicious Verifiers are slashed (Corollary 3). Therefore, malicious Verifiers
cannot indefinitely suppress block sealing via condition (6) or even reach condition (7).

• Consequently, all honest Consensus nodes will eventually agree on the validity of the Block
Seal.

• Assuming a consensus algorithm with guaranteed chain quality8, an honest Consensus Node
will eventually propose a block and include the Block Seal as prescribed by the protocol.

• Given that there are more than 2
3 of honest Consensus Nodes, the block containing the seal

will eventually be finalized (by liveness of consensus).
�

Theorem 2 Computational Safety
Given a system with

• partially synchronous network conditions with message traversal time bounded by ∆t;
• more than 2

3 of the Consensus Nodes’ stake is controlled by honest actors;
• all Verification Nodes are equally staked and more than 2

3 of them are honest.
Let Ñ denote the number of honest Verification Nodes and η the fraction of chunks each Verifier checks.
The probability Perror for a computational error in a sealed block is bounded by

Perror . Ξ ·
(
1− η

)Ñ (8)

for large Ñ . Here, Ξ denotes the number of chunks in the Execution Receipt.
8 Formally, chain quality of a blockchain is the ratio number of blocks contributed by honest nodes

number of blocks contributed by malicious nodes [31].

23

Theorem 2 states that the probability of a computational error decreases exponentially with the
number of Verifiers.

Proof of Theorem 2
Consider an Execution Receipt.

• For brevity, we denote the Execution Receipt’s chunks as L , i.e.,

L = ExecutionReceipt.executionResult.chunks.

Without loss of generality, we treat L as a set (instead of an ordered list), as this proof does
not depend on the order of L’s elements.

• Let Ξ be the total number of chunks in the Execution Receipt, i.e Ξ = |L|, where | · | denotes
the cardinality operator.

• Let ξ ∈ L denote a chunk.
As formalized in Corollary 1, each honest Verifier randomly selects a subset S ⊂ L with |S| = dη · Ξe
by execution ChunkSelfSelection (Algorithm 2). As each Verifier selects the chunks by Fisher-
Yates shuffle, it follows that chunk ξ not being selected as the first element is Ξ−1

Ξ and that ξ is not
selected as the second element is Ξ−2

Ξ−1 , etc. Hence, the probability that chunk ξ is not checked by
one specific verifer is

p̄ξ =
Ξ− 1

Ξ
· Ξ− 2

Ξ− 1
· . . . · Ξ− n

Ξ− (n− 1)
=

Ξ− n
Ξ

= 1− n

Ξ
, for n := |S| = dη · Ξe. (9)

Let P̄ξ be the probability that ξ is checked by none of the honest Verifiers.

P̄ξ = p̄Ñξ =
(
1− n

Ξ

)Ñ (10)

≤
(
1− η

)Ñ (11)

as n = dη · Ξe ≥ η · Ξ. Consequently, the probability of the specific chunk ξ not being checked
decreases exponentially with the number of Verifiers Ñ . Figure 5 visualizes the exact probability
P̄ξ as a function of η as given in equation (10).

The probability that all chunks are checked by at least one honest Verifier is (1− P̄ξ)Ξ. Conse-
quently, the probability an error in any chunk in the block remaining undetected is

Perror = 1− (1− P̄ξ)Ξ. (12)

We assume that the system parameter η is chosen such that P̄ξ ≈ 0 to ensure computational safety.
Hence, we can approximate eq. (12) by its first order Taylor series in P̄ξ.

(1− P̄ξ)Ξ ' 1− Ξ · P̄ξ (13)

Inserting equations (13) and (11) into (12) yields

Perror . Ξ ·
(
1− η

)Ñ
, (14)

which proves equation (8) from the theorem. We have now shown that the probability of a faulty
chunk in an Execution Receipt not being checked by an honest Verifier is bounded by (14). Fur-
thermore, every honest Verifier will challenge any faulty chunk it is assigned to check by raising a
FaultyComputationChallenge (see section 4.1 for details). Corollary 2 guarantees that a block is
only sealed if no correct FaultyComputationChallenge was raised. Hence, the only way a block can
be sealed with a faulty ExecutionResult is if the faulty chunks are not checked by honest Verifers.
Consequently, eq. (14) also bounds the probability of a faulty ExecutionResult being sealed.

�

24

Figure 5: Probability P̄ξ that a specific chunk is checked by none of the honest Verifiers. η is the fraction of chunks
each Verifier selects for checking. The graph illustrates probabilities for Ñ = 667 honest Verification Nodes verifying
an Execution Receipt with Ξ = 1000 chunks. The blue curve shows the dependency when Verifiers sample their chunks
based on Fisher-Yates as specified in Algorithm 2, i.e., sample chunks from the Execution Receipt without replacement.
For comparison, we show sampling with replacement.

3.7 Computational Load on Verification Nodes

Using equation (8), we can compute the required fraction η of chunks that each Verifier has to
check to achieve a specific Perror. For the mature system under full load, we expect there to be 1000
Verification Nodes and each block to contain up to Ξ = 1000 chunks. Furthermore, we make the
conservative assumption that only 2

3 of the Verification Nodes are honest, i.e., Ñ = 667.
Let the probability for a malicious Execution Node to succeed with an attempt to introduce a

compromised state into the blockchain be Perror ≤ 10−6. To achieve this, every Verification Node
would need to check 32 chunks, i.e., execute η = 3.2% of the work of an Execution Node. To lower
the probability even further to Perror ≤ 10−9, Verifiers only need to execute η = 4.2% of the work
of an Execution Node.

This shows that distributing and parallelizing the verification of computation results is efficient.
Furthermore, note that checking the chunks can be trivially executed in parallel.

25

4 Mitigation of Attack Vectors

In the following, we will discuss the most severe attacks on Flow. In this context, we would like
to re-iterate that the staking balances are maintained by the Consensus Nodes as part of the
network state (compare section 1.3). Hence, Consensus Nodes can adjudicate and slash misbehav-
ing nodes directly. The resulting updates to the network state are published in the blocks (field
slashingChallenges in message 2) without needing to involve Execution Nodes.

4.1 Adjudicating with Faulty Computation Results

In section 3.6, Theorem 2, we have shown that a faulty computation state will be challenged by a
Verification Node with near certainty. Formally, a Verification Node submits a Faulty Computation
Challenge (FCC), to the Consensus Nodes for adjudication. We start by introducing the necessary
notation and then proceed with specifying the details of an FCC and the protocol for processing
them.

1: message FaultyComputationChallenge {
2: bytes executionReceiptHash;
3: uint32 chunkIndex;
4: ProofOfAssignment proofOfAssignment;
5: StateCommitment stateCommitments;
6: Signature verifierSig;
7: }

Message 6: Verification Nodes send this message to Con-
sensus Nodes to challenge a specific Execution Receipt
(executionReceiptHash). The FaultyComputationChallenge
is specific to a computational output state for one
of the chunks, where chunkIndex is a zero-based in-
dex into ExecutionReceipt.executionResult.chunks (compare
Message 3).

Nomenclature (illustrated in Figure 6): For an
Execution Receipt with Ξ chunks, the field
ExecutionReceipt.executionResult.chunks
holds the StateCommitments [Λ0,Λ1, . . . ,ΛΞ].
For i ∈ {0, 1, . . . ,Ξ− 1}, Λi denotes the start-
ing state for the computation of the chunk with
index i. ΛΞ is the final state at the end of the
block (after all transactions are computed).

To denote the (interim) states between in-
dividual transactions, we extend the notation
accordingly. Let the chunk at index i contain
χi transactions. For k ∈ {0, 1, . . . , χi − 1},
Λi,k denotes the input state for computing the
transaction with index k within the chunk. Ac-
cordingly, Λi,χi−1 is the state at the end of the
chunk.

Note that Λi,χi−1 simultaneously serves as the starting state for the next chunk at index i +
1. Hence, Λi,χi as well as Λi+1 and Λi+1,0 refer to the same StateCommitment. The different
nomenclatures are introduced for ease of notation only.

Definition 3
A well-formed Faulty Computation Challenge (FCC), specified in Message 6, challenges one specific
chunk at index chunkIndex of an Execution Receipt (referenced by executionReceiptHash). It provides
the list

stateCommitments = [ΛchunkIndex,0,ΛchunkIndex,1, . . . ,ΛchunkIndex,χchunkIndex]. (15)

26

Published in Execution Receipt
States between chunks

chunk 0: transaction 0

chunk 0: transaction 1

chunk 0: transaction

chunk 1: transaction 0

chunk : transaction 0

chunk : transaction 1

chunk : transaction

Published in FCC against chunk i:
interim states between transactions
for chunk with index

Figure 6: Illustration of nomenclature State commitments (e.g., hashes) are represented as vertical lines and de-
noted by Λ. The bold lines visualize the starting states Λ0,Λ1, . . . ,ΛΞ−1 for the chunks, as well as the final state ΛΞ.
Furthermore, Λi,k is the input state for computing the transaction with index k within the chunk.

Definition 4 Protocol for Adjudicating a Faulty Computation Result
Let there be a Verifier Node V that is checking the chunk at index i and disagrees with the resulting
state Λi+1 ≡ Λi,χi . In the following, we denote the Verifier’s StateCommitments as Λ̃ and the Execution
Node’s with Λ.

1. Verifier V broadcasts a FaultyComputationChallenge to the Consensus Nodes with
• FaultyComputationChallenge.chunkIndex ← i
• FaultyComputationChallenge.stateCommitments ← [Λ̃i,1, . . . , Λ̃i,χi]

2. Consensus Nodes publish the FCC in their next finalized block (field slashingChallenges in
message 2)

3. The challenged Execution Node has a limited time to broadcast a FaultyComputationResponse
(Message 7) to the Consensus Nodes. Time is measured using a verifiable delay function [32].

1: message FaultyComputationResponse {
2: bytes FaultyComputationChallengeHash;
3: StateCommitment stateCommitments;
4: Signature executerSig;
5: }

Message 7: A challanged Execution Node broadcast a FaultyComputationResponse to the Consensus Nodes.

27

(a) Should the Execution Node not respond, it is slashed. Consensus Nodes will include a corre-
sponding notification in the next block (field networkStateUpdates in Message 2) that also
includes the output of the VDF as proof of waiting. In this case, adjudication ends with the
Execution Node being slashed.

(b) To prevent being slashed, the Execution Node must disclose all interim states in the chunk
by submitting a FaultyComputationResponse with
• FaultyComputationResponse.stateCommitments ← [Λi,1, . . . ,Λi,χi]

to the Consensus Nodes. In case the Execution Node sends a FaultyComputationResponse,
the protocol continues with step 4 below.

4. Consensus Nodes now compare the stateCommitments from both parties element-wise and find
the first mismatch. Let the first mismatch occur at index `, i.e.

Λi,` 6= Λ̃i,` (16)

for all l ∈ [0, 1, . . . , `− 1] : Λi,l = Λ̃i,l. (17)

Essentially, both parties agree that, starting from state Λi ≡ Λi,0, the computation should lead to
Λi,`−1 as the input state for the next transaction. However, they disagree on the resulting state
after computing this next transaction.

5. Consensus Nodes request state Λi,`−1 from either party. Furthermore, by resolving the texts of
collections in the block, Consensus Nodes obtain the transaction with index ` in the chunk, whose
output is disputed.

6. Consensus Nodes use Λi,`−1 as input state for computing transaction with index ` in the chunk.
Consensus Nodes now compare their locally computed output state with Λi,` and Λ̃i,`.

7. Any party who published a computation result that does not match the values computed by the
Consensus Nodes is slashed. Consensus Nodes will include a corresponding notification in the next
block (field networkStateUpdates in message 2).

Informally, Definition 4 describes a protocol by which a Verifier Node can appeal to the committee
of Consensus Nodes to re-compute a specific transaction whose output the Verifier does not agree
with. To avoid being slashed, the challenged Execution node must provide all information that is
required for the Consensus Nodes to re-compute the transaction in question. Nevertheless, there
is no leeway for the Execution Node to provide wrong information as honest Consensus Nodes will
verify the correctness based on previously published hash commitments:

• Consensus Nodes request transaction texts of collections. The collection hashes are stated in
blocks, which allow verification of the collection texts.

• Consensus Nodes request the last interim state Λi,`−1 in the chunk that both parties agree on.
A hash of this state was published by both the Verifier and the challenged Execution Node.
This allows the Consensus Nodes verify state variables (e.g., via Merkle proofs).

Furthermore, the described protocol is executed by all honest Consensus Nodes. The resulting
slashing is included in a block and hence secured by BFT consensus. Assuming a super-majority
of honest Consensus Nodes, it is guaranteed that the misbehaving node is slashed. The following
Corollary 3 formalizes this insight.

28

Corollary 3
Given a system with

• more than 2
3 of the Consensus Nodes’ stake is controlled by honest actors;

• and partially synchronous network conditions with message traversal time bounded by ∆t.
The following holds.

• If an honest Verifier node is assigned to verify a chunk that has a faulty computation result, the
Execution Node who issues the corresponding Execution Receipt will be slashed.

• If a dishonest Verifier Node challenges a correct computation result, the Verifier will be slashed.

4.2 Resolving a Missing Collection

As message 2 and 1 show, a block references its collections by hash but does not contain the individ-
ual transactions texts. The transactions texts are stored by the Collector Node cluster which build
the collection and is only required when Execution Nodes want to compute the blocks’ transactions.
Hence, a cluster of Collector nodes could withhold the transaction texts for a guaranteed collection.
While block production is not impacted by this attack, block execution halts without access to the
needed transaction texts.

When an Execution Node is unable to resolve a guaranteed collection, it issues a Missing Collec-
tion Challenge (MCC). An MCC is a request to slash the cluster of Collector Nodes (Message 1, line
4) who have guaranteed the missing collection. MCCs are directly submitted to Consensus Nodes.

Definition 5 Protocol for Resolving a Missing Collection
1. An Execution Node determines that the transaction texts for a GuaranteedCollection from the

current block are not available as expected. The protocol does not dictate how this determination
is reached, but the obvious implementation is assumed (ask the Guarantors, wait for a response,
ask other Execution Nodes, wait for a response).

2. The Execution Node broadcasts an MCC to all Collector and Consensus Nodes. The Consensus
Nodes record the challenge in the next block, but do not otherwise adjudicate the challenge at this
stage.

3. Any honest Collector Node, which is not a member of the challenged cluster, sends a request to
κ randomly selected Guarantors to provide the missing Collection. If the request is answered, the
requesting Collector Node forwards the result to the Execution Nodes.

4. If the Guarantor does not respond within a reasonable time period ∆t, the requesting Collector
Node will sign a Missing Collection Attestation (MCA), including the hash of the collection in
question. Time is measured using a verifiable delay function [32] and the MCA contains the VDF’s
output as proof of waiting. The MCA is broadcast to all Consensus and Execution Nodes.

5. An honest challenged Guarantor will respond with the complete Collection text to any such requests.
6. If the Execution Nodes receive the collection, they process the block as normal. Otherwise, they

wait for more than 2
3 of the Collector Nodes to provide MCAs.

7. Appropriate MCAs must be included in all Execution Receipts that skip one or more Collections
from the block.

8. Every MCC will result in a small slashing penalty for each Execution Node and each challenged
Guarantor. Even if the MCC is resolved by finding the Collection, each of these actors must pay
the fine, including the Execution Nodes that did not initiate the MCC. This is designed to prevent
the following edge cases:

29

• Lazy Guarantors that only respond when challenged: without a fine for challenged Guarantors,
even in the case where the collection is resolved, there is no incentive for Guarantors to respond
without being challenged.

• Spurious MCCs coming from Byzantine Execution Nodes: without a fine for Execution Nodes,
there is a zero-cost to generating system load through unjustified MCCs.

• Don’t punish the messenger: all Execution Nodes must be fined equally so that there is no
disincentive to be the first Execution Node to report a problem.

9. If an Execution Receipt containing an MCC is sealed, ALL guarantors for the missing Collection
are subject to a large slashing penalty (equal to the minimum staking requirement for running a
Collector Node).

Discussion

• The slashing penalty for a resolved MCC should be small enough that it doesn’t automatically
eject the Collector Nodes from the network (by dropping them below the minimum staking
threshold), but must be significant enough to account for the fact that resolving an MCC is
very expensive.

• Resolving an MCC is very expensive. Each Collector Node will request the Collection from one
Guarantor, so each Guarantor will have to respond to many requests or risk being slashed.
Each Execution Node will be flooded with copies of the Collection if it is available. We
are operating under the theory that if MCCs have a very high probability of being resolved
correctly (Lemma 3), spurious MCCs should be very rare specifically because of the described
penalties.

• If most Execution Nodes are Byzantine and raise spurious MCCs, but at least one Execution
Node is honest and generates complete Execution Receipts, a correct Execution Receipt will
be sealed (assuming an honest super-majority of Collector Nodes and Consensus Nodes).
Furthermore, the Execution Nodes who raised the spurious MCC will be slashed.

• If most Guarantors of a particular Collection are Byzantine, and refuse to provide Collection
data, but at least one Guarantor is honest, the Collection will be provided to an honest
Execution Node and executed properly.

• A cabal of 100% of Execution Nodes acting maliciously can halt the network by not executing
new blocks. Nevertheless, no faulty state can be introduced into the network by such a denial
of service attack.

• In order for an attacker to obtain the ability to introduce an error into the computation state
(with non-negligible probability), the attacker would need to control a Byzantine fraction of
100% of Execution Nodes and more than 2

3 of Verifier Nodes.

Theorem 3 Liveness of Collection Text Resolution
Given a system with

• more than 2/3 of the Consensus Nodes’ stake is controlled by honest actors;
• more than 2/3 of the Collector Nodes’ stake is controlled by honest actors;
• and partially synchronous network conditions with message traversal time bounded by ∆t.

The system can be configured such that any guaranteed collection is available with probability close to
1.

Proof of Theorem 3
For this proof, we assume that Byzantine nodes collaborate to the maximum extent possible to

30

prevent a collection from being resolved. Unless there are protocol-level guarantees, we consider
the most favorable conditions for the Byzantine nodes. Let us assume that the Byzantine nodes
successfully prevented a collection from being resolved, i.e., more than 2/3 of the collectors issued
an MCA. Let

• N the total number of collector nodes, Ñ the number of honest collectors, and N̄ the number
of Byzantine collectors;

• ncluster the size of the collector cluster that produced the missing collection, ñcluster the number
of honest collectors in the cluster, and n̄cluster the number of Byzantine collectors in the cluster;

• ng the number of guarantors of the missing collection, ñg the number of honest guarantors,
and n̄g the number of Byzantine guarantors.

We consider a system configuration with N = Ñ+N̄ = 1000 collector nodes where Ñ = 2bN/3c+1.
In Flow, the clusters are created by randomly partitioning the collectors into clusters of size ncluster
via Fisher-Yates shuffling. Hence, the probability of drawing a cluster with n̄cluster Byzantine actors
is given by the hypergeometric distribution

P
ncluster,N,N̄

(n̄cluster) =

(
N̄

n̄cluster

)(
N−N̄

ncluster−n̄cluster

)(
N

ncluster

) . (18)

For a collection, at least ng = 2bncluster/3c+ 1 = n̄g + ñg guarantors are required. The number of
Byzantine guarantors n̄g could take any value in 0, 1, . . . , n̄cluster. There could be more Byzantine
nodes in the cluster than required to guarantee the collection, i.e., ng < n̄cluster. In this case,
we assume that only the minimally required number of ng Byzantine nodes would guarantee the
collection to minimize slashing.

n̄g ∈
{

0, 1, . . . ,min
(
ng, n̄cluster

)}
. (19)

As each honest guarantor increases the probability of a collection being successfully retrieved, we
assume that the Byzantine nodes only involve the absolute minimum number of honest nodes to
get the collection guaranteed:

ñg = ng − n̄g = 2bncluster/3c+ 1− n̄g (20)

When an honest collector that is not a guarantor receives a MCC, it selects κ guarantors and
requests the collection from them. We assume that only honest guarantors would answer such a
request. The probability for a correct node to receive no answer when inquiring about the missing
collection, i.e., to issue in MCA, is

Pκ,ng,ñg
(0) =

(
ng−ñg
κ

)(
ng
κ

) . (21)

Furthermore, every Byzantine node that is not a guarantor of the collection would issue an MCA
to increase the chances that the Missing Collection Challenge is accepted. Hence, there are (N̄ − ng)
MCAs from Byzantine nodes. For a collection to be considered missing, the protocol require 2

3N
collectors to send MCAs. Consequently, the minimally required number of MCAs from honest nodes
is

r = Ñ − (N̄ − n̄g). (22)

31

Figure 7: Worst-case probability that a collection cannot be resolved. The graph shows numerical values for
P (MCC accepted), equation (25), for N = 1000, Ñ = 667 and N̄ = 333.

As honest nodes independently contact guarantors, each honest node conducts a Bernoulli trial and
issues a MCAs with probability Pκ,ng,ñg

(0). Consequently, the probability that r honest nodes issue
MCAs follows a Binomial distribution

B(r) =

(
Ñ

r

)[
Pκ,ng,ñg

(0)
]r[

1− Pκ,ng,ñg
(0)
]Ñ−r

. (23)

Given the number n̄cluster of byzantine actors in the cluster, the worst-case probability that the
MCC is accepted by the system is

P (MCC accepted | n̄cluster) = max
n̄g∈

{0,1,...,min(ng, n̄cluster)}

Ñ∑
r=

Ñ−N̄+n̄g

B(r) . (24)

The overall probability of an MCC being accepted is, therefore,

P (MCC accepted) =
∑

n̄cluster∈
{0,...,ncluster}

P (MCC accepted | n̄cluster) · Pncluster,N,N̄
(n̄cluster) (25)

Figure 7 illustrates the worst-case probability of a chunk missing, i.e., that a MCC shows the
probabilities according to equation (25).

�

4.3 Placing errors in chunks checked by colluding Verifier Nodes

If an Execution Node and several Verifier Nodes are colluding, they have the ability to secretly
determine which chunks would be checked by the colluding Verifiers before even publishing an
Execution Receipt. However, the self-assignment scheme defined in section 3.4 is independent for

32

each Verifier and in addition non-predictable for anyone without the Verifier’s private key. Therefore,
honest Verifiers will still check each chunk with uniform probability, independently of the colluding
Verifiers. Consequently, if a malicious Execution Node wants to introduce a computation error,
there is no advantage in placing the error in chunks that are checked by colluding Verifiers. This
insight is formalized as Corollary 4.

Corollary 4
Given a system with partially synchronous network conditions with message traversal time bounded by
∆t. Let there be a malicious Execution Node that tries to introduce a computation error into one of
the chunks of a block. The success probability cannot be increased by the chunk selection of Byzantine
Verifiers.

33

Acknowledgments

We thank Dan Boneh for many insightful discussions, and Alex Bulkin, Karim Helmy, Chris Dixon,
Jesse Walden, Ali Yahya, Ash Egan, Joey Krug, Arianna Simpson, as well as Lydia Hentschel for
comments on earlier drafts.

References
[1] Alexander Hentschel, Dieter Shirley, Layne Lafrance, and Ross Nicoll. Flow: Separating consensus and compute,

2019.
[2] Silvio Micali, Salil Vadhan, and Michael Rabin. Verifiable random functions. In Proceedings of the 40th Annual

Symposium on Foundations of Computer Science, FOCS ’99, pages 120–, Washington, DC, USA, 1999. IEEE
Computer Society.

[3] Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY technology overview series, consensus
system. CoRR, abs/1805.04548, 2018.

[4] Benedikt Bünz, Steven Goldfeder, and Joseph Bonneau. Proofs-of-delay and randomness beacons in ethereum.
2017.

[5] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller blockchains. In ASI-
ACRYPT, 2018.

[6] Jae Kyun Kwon. Tendermint : Consensus without mining. 2014. https://github.com/cosmos/cosmos/tree/
master/tendermint.

[7] Ethan Buchman. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains, Jun 2016.
[8] Jae Kwon and Ethan Buchman. Cosmos - A Network of Distributed Ledgers. 2016. https://cosmos.network/

cosmos-whitepaper.pdf.
[9] Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael K. Reiter, Dragos-

Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT: a scalable decentralized trust infrastructure for
blockchains. CoRR, abs/1804.01626, 2018.

[10] Ittai Abraham, Guy Gueta, and Dahlia Malkhi. Hot-stuff the linear, optimal-resilience, one-message BFT devil.
CoRR, abs/1803.05069, 2018.

[11] J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green, K. N. Levitt, P. M. Milliar-Smith, R. E. Shostak, and
C. B. Weinstock. Tutorial: Hard real-time systems. chapter SIFT: Design and Analysis of a Fault-tolerant
Computer for Aircraft Control, pages 560–575. IEEE Computer Society Press, Los Alamitos, CA, USA, 1989.

[12] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM, 27(2):228–234,
April 1980.

[13] L. Lamport. The Weak Byzantine Generals Problem. J. ACM, 30(3):668–676, July 1983.
[14] Heidi Howard. Distributed consensus revised. PhD thesis, 2018. https://www.cl.cam.ac.uk/techreports/

UCAM-CL-TR-935.pdf.
[15] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony. J. ACM,

35(2):288–323, April 1988.
[16] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one

faulty process. J. ACM, 32(2):374–382, April 1985.
[17] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham. HotStuff: BFT Consensus

with Linearity and Responsiveness. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC ’19, pages 347–356, New York, NY, USA, 2019. ACM.

[18] Vlad Zamfir. A Template for Correct-By-Construction Consensus Protocols. 2017. https://github.com/
ethereum/research/tree/master/papers/cbc-consensus.

[19] Vlad Zamfir. Casper the Friendly Ghost: A ‘Correct By Construction’ Blockchain Consensus Protocol. 2017.
https://github.com/ethereum/research/blob/master/papers/CasperTFG.

[20] Vlad Zamfir, Nate Rush, Aditya Asgaonkar, and Georgios Piliouras. Introducing the “Minimal CBC Casper”
Family of Consensus Protocols. 2018. https://github.com/cbc-casper/cbc-casper-paper.

34

https://github.com/cosmos/cosmos/tree/master/tendermint
https://github.com/cosmos/cosmos/tree/master/tendermint
https://cosmos.network/cosmos-whitepaper.pdf
https://cosmos.network/cosmos-whitepaper.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-935.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-935.pdf
https://github.com/ethereum/research/tree/master/papers/cbc-consensus
https://github.com/ethereum/research/tree/master/papers/cbc-consensus
https://github.com/ethereum/research/blob/master/papers/CasperTFG
https://github.com/cbc-casper/cbc-casper-paper

[21] Sarah Azouvi, Patrick McCorry, and Sarah Meiklejohn. Betting on blockchain consensus with fantomette. CoRR,
abs/1805.06786, 2018.

[22] Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. Demystifying incentives in the consensus
computer. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications Security,
CCS ’15, pages 706–719, New York, NY, USA, 2015. ACM.

[23] Google. Protocol buffers. https://developers.google.com/protocol-buffers/docs/proto.
[24] Håkan L. S. Younes and Reid G. Simmons. Probabilistic verification of discrete event systems using acceptance

sampling. In Ed Brinksma and Kim Guldstrand Larsen, editors, Computer Aided Verification, pages 223–235,
Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[25] Ethereum Foundation. Patricia tree. https://github.com/ethereum/wiki/wiki/Patricia-Tree.
[26] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scaling Byzantine

Agreements for Cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP
’17, pages 51–68, New York, NY, USA, 2017. ACM.

[27] Ronald A. Fisher and Frank. Yates. Statistical tables for biological, agricultural and medical research / by the
late Sir Ronald A. Fisher and Frank Yates. Longman [Harlow], 6th ed. revised and enlarged. edition, 1974.

[28] Donald E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-Wesley,
Boston, third edition, 1997.

[29] G. Barrie Wetherill. Acceptance sampling: basic ideas, pages 12–43. Springer US, Boston, MA, 1977.
[30] E.G. Schilling and Dean Neubauer. Acceptance Sampling in Quality Control. CRC Press, 2017.
[31] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and applications.

In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015, pages 281–310,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[32] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In Advances in
Cryptology – CRYPTO 2018 - 38th Annual International Cryptology Conference, 2018, Proceedings, Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), pages 757–788. Springer-Verlag, 1 2018.

35

https://developers.google.com/protocol-buffers/docs/proto
https://github.com/ethereum/wiki/wiki/Patricia-Tree

	1 Flow Architecture
	1.1 Roles
	1.1.1 Collector Role
	1.1.2 Consensus Role
	1.1.3 Execution Role
	1.1.4 Verification Role
	1.1.5 Observer Role

	1.2 Locality of Information
	1.3 Computational State vs. Network Infrastructure State
	1.3.1 Staking and Slashing

	2 General Techniques
	2.1 Specialized Proof of Confidential Knowledge

	3 Transaction Processing Flow
	3.1 Collector Role: Batching Transactions into Collections
	3.2 Consensus Role: Linearizing Computation into Blocks
	3.3 Execution Role: Computing Transactions in Block
	3.3.1 Chunking for Parallelized Verification
	3.3.2 The Execution Receipt

	3.4 Verification Role: Checking Execution Result
	3.4.1 Self-selecting chunks for verification
	3.4.2 Verifying chunks

	3.5 Consensus Role: Sealing Computation Result
	3.6 Proof of Computational Correctness
	3.7 Computational Load on Verification Nodes

	4 Mitigation of Attack Vectors
	4.1 Adjudicating with Faulty Computation Results
	4.2 Resolving a Missing Collection
	4.3 Placing errors in chunks checked by colluding Verifier Nodes

	Acknowledgments
	References

