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ABSTRACT

The Flare Network is a distributed network running the Avalanche consensus protocol adapted
to Federated Byzantine Agreement and leveraging the Ethereum Virtual Machine. It can thus be
leveraged as a scaling method for smart contract networks without relying on economic safety
mechanisms. The absence of a link between network safety and the native token, the Spark, allows for
greater flexibility as to how the native token can be used. The Spark Dependant Application model
provides a blueprint for building applications on the Flare Network. This relies on three components:
Spark used as collateral, Spark used to contribute to the Flare Time Series Oracle providing on-chain
data estimates and Spark used as a participation token in governance schemes.

1 Introduction

The increasing interest in using smart contract platforms to facilitate decentralized applications has led to an effort
to develop new consensus protocols with increased computation throughput. In particular, Proof of Stake protocols
(POS) are a family of consensus protocols which leverage economic means to guard against attacks. More specifically,
network participants lock their network’s native token in a staking contract, which they may lose in case of malicious
behavior. Thus, the network’s safety is proportional to the value of stake committed. This in turn limits the use cases
that it is possible or desirable to express on a POS based network. Furthermore, competing uses for the network’s native
token, such as Decentralized Finance (DeFi), can cannibalize the safety of the network [Chi20].

In contrast, Federated Byzantine Agreement (FBA) are a class of scalable consensus protocols that do not rely on
economic mechanisms to secure the network [Maz15; SYB+14]. Flare introduced the first such iteration of a Turing
complete FBA protocol in [RU19]. The Flare Network is a new Turing complete smart contract platform, based on
the Avalanche protocol [Roc18] in a FBA setting [CC19], and integrating the Ethereum Virtual Machine (EVM). The
resulting network is scalable, safe and decentralized. It is freed from the constraints and potential safety conflicts of
utilizing economic means to solve the Sybil attack.

Flare’s native token, the Spark, is required for spam control at the network level. Because the safety of the network is
not contingent on the token itself, Spark can be used in ways which would be unsafe for other networks. First, Spark
can be used as collateral within applications. Second, Spark as a contributor, but not the sole contributor, to an oracle
providing on-chain time series data estimates, called the Flare Time Series Oracle (FTSO). Third, Spark as a governance
methodology across all elements that rely on it. These three components form the building blocks of a collection of
applications that can be built using Spark, termed Spark Dependent Applications (SDA’s). Furthermore, as the network
doesn’t require staking or computation returns for safety, the FTSO becomes the inflation function for Spark itself.

One natural application for the SDA is to enable trustless token representations of non-Turing complete tokens. Indeed,
approximately 75% of the value that has emerged in public blockchain is in crypto currencies on non-Turing complete
blockchains1. Spark enables the value represented by these tokens to be used on a scalable smart contract platform in a
trustless manner. Furthermore, once that value is represented trustlessly on Flare it can then potentially be propagated
across other networks through interoperability networks such as Cosmos and/or PolkaDot. The first such representation

1As of June 2020 according to https://coinmarketcap.com/
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is XRP as detailed in [Net20], which for the first time will allow XRP to be used trustlessly with Turing complete smart
contracts.

This document proceeds as follows. Section 2 introduces the Flare network and its consensus mechanism. Section 3
outlines the specification of Spark as a token that works like a master key for a potential series of other tokens and
applications. In section 4, the Flare time series oracle is presented. Next, in section 5, the governance of the network is
discussed, whereby Spark token holders can vote to modify network parameters. Finally, section 6 presents the Flare
Foundation which is structured with the aims of advancing the network and helping implement certain governance
decisions whilst being transparent, neutral and naturally reducing in prominence. Crucially, it can be dissolved by Spark
token holders if it does not perform to expectations.

2 The Flare Network

In this section, an overview of the Flare Network is first presented in 2.1, which includes a discussion on the network
consensus, as well as its safety, complexity and liveness considerations. In subsection 2.2, the process of achieving
consensus on the state of any deterministic system external to the network for use in downstream applications, such as
the XRP Ledger state for use in FXRP on Flare, is presented.

2.1 Overview

The Flare Network is a distributed network whereby nodes run the Avalanche consensus protocol [Roc18] with a key
adaptation to a Federated Byzantine Agreement (FBA) consensus topology [CC19]. The Flare Network leverages the
Ethereum Virtual Machine (EVM), enabling the network to run Turing complete smart contracts. The combined usage
of the FBA consensus topology with a Turing complete smart contract layer makes Flare a scalable public smart contract
network that does not require a native token for safety. This is a useful property as the cost to attack network safety in
networks that do leverage a token for safety is related to the speculative value of the token, therefore facilitating an
incentive in these networks to create a double-spend attack whereby the cost of an attack is lower than the reward from
the successful double-spend [Lok+19].
Definition 2.1. The Flare Network is a distributed network whereby nodes run the Avalanche consensus proto-
col [Roc18] adapted to the FBA [CC19] consensus topology and leveraging the EVM.

Instead of being used for network safety, Flare’s native token, the Spark introduced in section 3, is used to trustlessly
issue tokens from non-Turing complete networks, such as XRP, onto Flare so that they can be leveraged in Turing
complete smart contracts. Crucially, this trustless issuance on Flare does not require the cooperation of the non-Turing
complete networks, meaning that the other networks do not have to make any changes to their protocol to enable
the issuance on Flare. The Flare Network can then cooperate with interoperability protocols that do require bilateral
protocol cooperation for cross-network asset issuance, such as Cosmos [ICS20], meaning that Flare can act as a unified
frictionless pipeline of non-Turing complete assets into these networks.

Governance over the network and a wide set of parameters is achieved through Spark token ownership, as discussed in
section 5. This allows Flare and its core applications to be highly dynamic, upgradable and increasing in utility.

2.1.1 Consensus

The Flare Network is organised in an FBA topology for its network-level consensus. FBA is unique as a consensus
topology in that it achieves safety without relying on economic incentives that can interfere with high-value and
high-risk use-cases [Maz15].

However, a criticism of pure FBA is that it leads to fragile structures of constituent nodes, permitting topology scenarios
where a single node failure can cause a network-wide failure [Mac18]. For this reason, a specific setting of FBA called
a Unique Node List (UNL) topology [CM18] is prioritised that emphasises clarity and ease-of-use while maintaining
the open-membership property of FBA. The basis of the UNL topology is symmetry in network structure by requiring
that the set of nodes that each node relies on for consensus intersects with other node’s sets by a governance-defined
threshold, called the UNL intersection set, which prevents the single node failure mode of the pure FBA topology. In the
following, the total number of nodes in a UNL is defined as n. Note that the value of n can technically differ between
different node operators as it is a privately set variable that cannot be forcibly set by others. However, for simplicity
of safety analysis, it is recommended that nodes agree on a value for n through a non-automated Spark token holder
governance vote, see section 5.3.3.
Definition 2.2. A node operator’s unique node list (UNL) is that node operator’s private definition of nodes that they
voluntarily choose to rely on for consensus.
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Definition 2.3. A UNL intersection set is a minimal UNL subset that overlaps a node operator’s UNL such that any
two node operators that wish to have their nodes be consistent in network state must share at least a common UNL
intersection set. The UNL intersection set size is a governance-defined parameter and is defined as I% of n, where n is
the number of nodes in a node operator’s unique node list.

The underlying consensus protocol leveraged by the Flare Network is the Avalanche Consensus Protocol [Roc18].
Avalanche is a flexible protocol in terms of the different Sybil-resistance approaches that can be used with it, including
the FBA (and therefore UNL) topology [CC19]. The Avalanche parameter k is the size of the uniform random sample
of unique nodes from the network that are queried during consensus. In [CC19], Chitra et. al show that if any two
samples of the nodes during consensus in an Avalanche network are guaranteed to intersect by at least one node, then a
property necessary for safety in FBA networks called the quorum intersection property (QIP) is attained.
Definition 2.4. An FBA network has the quorum intersection property (QIP) if there do not exist disjoint quorums of
the FBA network.

In the UNL topology setting of Avalanche for the Flare Network deployment, k is tuned such that any sample of the
network contains more than 50% of a UNL intersection set. In other words, k is set to

k > n(1− I/2), (1)

for 0 < I ≤ 1, and where n is the UNL size. This guarantees that any two samples of the network during consensus by
nodes with UNLs that overlap by a UNL intersection set will contain intersection by at least one node, and therefore
attain the quorum intersection property (QIP).
Example 2.1. Suppose that the UNL intersection set size is tuned to 90% i.e. I = 0.9. The value of k is then set to
strictly greater than n(1− I/2) = 0.55n i.e. to 55% of the UNL size. This will guarantee that a sample of the network
will contain more than 50% of a UNL intersection set.

2.1.2 Network safety

The safety consideration, see definition 2.5, of the Flare Network is that the quorum size should be at least greater
than or equal to k > n(1− I/2), 0 < I ≤ 1, in order to ensure that any two quorums intersect by at least one node.
Indeed, the toy example 2.2, illustrates a risk in pure FBA where a quorum intersection of one node is a permitted
network topology. This example shows why the Flare Network prioritises the use of the UNL topology over the pure
FBA topology, as the following permitted setting in pure FBA would enable a single node failure to impact the entire
network’s safety.
Definition 2.5. A set of nodes in an FBA network exhibits safety if no two nodes externalize different values at the
same time.
Example 2.2. Suppose that the UNL intersection set size is tuned to one node. The value of k is then set to 100% of the
UNL size, as this would guarantee a sample of the network that always contains the one node in the UNL intersection
set. Because this node alone intersects every possible quorum, it could cause a network-wide safety attack if it became
Byzantine.

The following analysis demonstrates how the value of k can be tuned to avoid the one node intersection setting while still
guaranteeing the preservation of the quorum intersection property. Suppose that greater than 66% of a UNL intersection
set is included in any quorum. This means that any two possible quorums would intersect by at least 33% of the nodes in
a UNL intersection set, instead of just by one node as in the previous example. Therefore, at least 33% of the nodes in a
UNL intersection set would need to become Byzantine in order to cause a loss of safety between nodes that share a UNL
intersection set, as this number would cause a loss of the quorum intersection property between at least two candidate
quorums. 66% of a UNL intersection set can be defined mathematically as (2n ∗ I +1)/3. Then, any quorum must also
account for the section outside of a UNL intersection set, defined as n(1− I), in order to ensure that any random sample
of a node operator’s UNL contains representation from at least 66% of a UNL intersection set. Combining the two sets
together, the sample size k is set to k = (2n ∗ I +1)/3+ n(1− I) = n− (n ∗ I − 1)/3 > n(1− I/2), 0 < I ≤ 1, as
the k-sized samples can be used to create quorum slices from the FBA topology framework [CC19], where a quorum
slice is each node’s private definition of what a quorum is [Maz15]. Note that for 100% UNL overlap, where I = 1,
that the quorum size reverts to (2n+ 1)/3, which is the quorum size in traditional Byzantine Agreement.

2.1.3 Network complexity

The communication complexity of the Avalanche consensus protocol is O(kn log n) [Roc18; CC19]. This means that it
is necessary to bound the size of k while preserving the quorum intersection property. The following demonstrates
an approach to reducing the communication complexity of Avalanche in the FBA setting, however, for the purposes
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of simplicity in safety analysis of the Flare Network, we discuss why we recommend not following the approach. In
[CC19], Chitra et. al propose a method that relies on Y independently drawn k − 1 element subsets of the nodes in
the network, where Y ∼ Poisson(λ). These subsets approximate the notion of quorum slices from the FBA consensus
framework, and Chitra et. al prove that for log(n) < k ≤ n

2 and λ < poly(k), that the quorum intersection property is
guaranteed with high probability. However, the benefit of only needing to set one parameter is increased simplicity of
node operation, which is a necessary trait for involving high numbers of node operators in the network in any case.
Therefore, the method of only setting k to k > n(1 − I/2), 0 < I ≤ 1 at the expense of higher communication
complexity during consensus is prioritised.

2.1.4 Network liveness

The liveness, see definition 2.6, consideration of the Flare Network is that any set of nodes that blocks a node from
being able to form a quorum during consensus can cause a loss of liveness for that node. In the UNL topology, nodes
can freely change their UNL independently of other nodes in the network, and a node suffering from a loss of liveness
can therefore change their UNL to substitute out failed nodes. This is not a feature of other networks that require global
agreement on network membership.
Definition 2.6. A node in an FBA network exhibits liveness if it can externalize a value without the participation of any
adversarial nodes.

2.2 State-Connectors: Consensus on the state of external systems

Consensus on the state of external systems, such as the XRP Ledger or a stock market, for use in applications on
Flare such as FXRP [Net20], is a high-risk process. For example, the external system could suddenly issue a signal
that a billion dollars worth of value has moved. As soon as possible then and without any human intervention, the
Flare Network needs to be able to compute the finality of this external state such that it is available as a signal to
the downstream applications on Flare, such as FXRP. In the case of FXRP, if the XRP Ledger state were recorded
incorrectly to the Flare Network, then it would be possible to create a billion dollars worth of FXRP on the Flare
Network that cannot be then converted back to XRP, undermining the value of the issued FXRP and any application
that depends on it.

Thus, consensus on the state of external systems must be safely organised for immediate use in downstream applications
on the Flare Network. This is achieved via state-connectors, defined in 2.7, which are responsible for safely encoding
the state of external systems to the Flare Network.
Definition 2.7. The state-connectors are organised in a FBA topology in the UNL symmetric setting, just like the
underlying Flare Network nodes. Each state-connector is run by a single Flare Network node, and the state-connector
shares the same UNL definition as its Flare Network node. There are three phases of the state-connector system: 1)
sampling the external-system state, 2) registering the state on the Flare Network and 3) finalising the state for use in
smart contracts on the Flare Network.

The state-connectors are designed in order to fulfill the following criteria:

1. Open-membership. In the same way that anyone is permitted to participate in the consensus of the Flare
Network, anyone is also permitted to run a state-connector.

2. Consistency. The recorded external state should be consistent between nodes on the Flare Network over time.
3. Independent verification. A state-connector should be able to independently verify an external state before it

gets finalised to the Flare Network state. That is, if a state-connector’s independent verification fails, then the
state-connector does not permit the proposed external system state to be applied to its local Flare Network
node.

4. No reliance on economic incentives for safety. Control over the state-connector system should not be based
on who has the most money. Although state-connectors independently verify the external state such that they
only permit the state that matches reality to be applied to the Flare Network, a state-connector with enough
money could block the overall state-connector system from making progress on determining consistency
between nodes on the Flare Network over time if control over this system were based on who has the most
money. This has the same risk as basing the network consensus on who has the most money, that is that it
would fundamentally limit the value that can be expressed in the system.

The sampling, registering and finalising phases of the state-connector system depend on the particular external system
queried. In the following, these stages are concretely defined leveraging the XRP Ledger state example. The design can
be straightforwardly generalised to other deterministic external systems of interest.
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2.2.1 Sampling the external-system state

The primary engineering consideration in sampling the state of an external system is the rate at which the external
system updates over time. For example, the XRP Ledger finalises rapidly at about once every 5 seconds. However,
other systems such as Bitcoin have significantly longer periods of time in between state updates. In systems with faster
state update times such as the XRP Ledger, it is useful to batch together claims about the state of the system into claim
periods so that the state-connectors have enough time to both sample the external system and register its state to the
Flare Network.

For example, a claim may represent a collateralization of XRP on the XRP Ledger or a derivative position in a stock
market. Claims are external-system specific and are totally-ordered among other claims for each external system that is
recorded to the Flare Network based on how they were originally ordered within the external system.
Definition 2.8. A claim is a unit of information about the state of an external system.

Ledger Index
55203463
Hash: 36C2...F879

Claims

Ledger Index
55203464
Hash: FE40...0B7C

Ledger Index
55203465
Hash: 4B88...D8BB

Claim Period

   

Transactions

   

Transactions

   

Transactions

Figure 1: An example of claims within the XRP Ledger which are defined as a subset of the transactions within a ledger,
for example all transactions relating to FXRP collateralisations, and where the claim period is set to three XRP Ledger
closes.

The size of a claim-period set is flexible and should be related to the state update rate of its external-system. State-
connectors must agree on the claim-period size for an external-system via governance, otherwise the state-connectors
would lose consistency when coming to consensus on the existence and ordering of an external-system’s claim-periods.
Definition 2.9. A claim-period is a totally-ordered set of claims.
Example 2.3. A claim-period in Bitcoin could represent a single Bitcoin block due to the longer length of time in
between new blocks on Bitcoin.
Example 2.4. However, on the XRP Ledger, a claim period could be tuned to contain 10 XRP Ledger closes, as this
gives a reasonable amount of time for state-connectors to query the XRP Ledger state, process the claims (e.g. filtering
for spam claims), and then register the claims on the Flare Network to form a claim-period.

The state-connectors apply external-system state updates to the Flare Network by organising consensus on claim-periods.
Claim-periods are totally-ordered among other claim-periods and are application-invariant. That is, the consensus
system leveraged by the state-connectors in the smart contracts on Flare has no notion of the application details
contained in claim payloads, the system instead is only concerned with organising consensus on the existence and
ordering of claim-period sets.

2.2.2 Registering the external-system state on the Flare Network

Each state-connector periodically samples and then independently registers claims to the Flare Network that were
previously unregistered by that state-connector in order to construct their own local definition of the current claim-period.

Claims do not automatically reach finality such that a non-reversible action occurs on the Flare Network given only a
registration of a claim by a state-connector. A state-connector requires that a sufficient number of other state-connectors
which it has chosen to rely on for consensus within its node operator’s UNL have also registered the claim and finalised
it as part of a claim-period set. The finality of a claim-period set is defined concretely then in the following section.

2.2.3 Finalising the external-system state for use in smart contracts on the Flare Network

Once a state-connector registers all of the claims contained within a claim-period set, it issues a signal to the Flare
Network that it is proposing the claim-period to be accepted for finality. When a quorum of state-connectors from
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the perspective of a state-connector’s UNL registers the same state for a claim-period N , then this state-connector is
deemed to have accepted this state. A state-connector will also accept this state if a v-blocking set of nodes has accepted
the state, where a v-blocking set of nodes is such that it intersects every possible quorum of the state-connector by at
least one node.

Accepting this claim-period N state does not mean that the constituent claims are finalized yet such that they are
available to smart contracts on the Flare Network however. The final stage is that a state-connector must have personally
registered the same definition for the accepted claim-period N state, based on its own observation of the external system.
If the state-connector’s registration is present, then the claim-period N is automatically finalized from the perspective
of that state-connector when the claim-period N + 1 is first accepted. If the state-connector’s registration is not present,
then the local state-connector was not able to personally observe the claim-period N state and it therefore does not
reach finality from the perspective of this state-connector, causing the state-connector’s node to come to a safe halt2.

Engineering considerations regarding the encoding of bespoke definitions of the unique node list within the smart
contract layer for use in computing the consensus of the state-connectors are discussed in appendix A.

Therefore, the state of external systems, such as the XRP Ledger, will be available on the Flare Network for use in
smart contracts in a way that provides: open-membership, consistency, independent verification and no reliance on
economic incentives for safety.

3 The Spark token

The Spark token is the intrinsic currency of the Flare Network. Its technical use to curtail network spam is introduced
in 3.1. Next, the applications of Spark are presented in section 3.2. The creation, distribution and apportionment
methodologies for Spark are then specified in 3.3.

Definition 3.1. The Spark is the native token of Flare Network.

3.1 Spark technical use

Spark’s technical purpose is to impose a cost upon transactions so as to disincentivize superfluous transactions i.e.
network spamming. This is achieved via transaction fees.

The Flare Network uses the Ethereum Virtual Machine (EVM) [Woo+]. The EVM defines a transaction’s computational
complexity in terms of units of Gas. To avoid extremely lengthy or interminable transactions, Flare imposes a complexity
limit, defined in Gas units. A Gas conversion rate between Gas and Spark tokens is set by the network. Thus, a
transaction cost is defined as the complexity limit multiplied by the conversion between Gas and Spark. The transaction
cost is burned rather than accruing to some set of participants. Both the complexity limit and Gas to Spark conversion
rate are governance parameters, see section 5 for further information on governance.

Definition 3.2. The complexity limit is the maximum amount of Gas units that a single transaction can expend.

Definition 3.3. The Gas conversion rate is the cost of a Gas unit in Spark tokens.

Definition 3.4. There is a single transaction cost for any transaction of complexity up to the complexity limit. In Spark
tokens it is given by T = c · γ, where c is the complexity limit and γ is the Gas conversion rate.

3.2 Spark Dependent Applications

Spark is used as the arbiter of network governance and a central component of an interlocking set of utilities that
collectively form a novel way of structuring decentralized applications, termed Spark Dependent Applications (SDA).

Definition 3.5. A Spark Dependent Application (SDA) is an application which can be built utilising any combination
of the following three components: a Spark mediated time series oracle (see section 4), Spark used as collateral and
Spark mediated governance (see section 5).

Each of these components is set in brief below.

The SDA structure is intended to provide utility by allowing applications that deploy on Flare to optionally benefit from:

2There are two ways a node can recover from this state: 1) Issue a signature that ratifies the proposed claim-period N state, or 2)
If the node does not agree to the network-wide decision on the claim-period N state from the perspective of its UNL, then it can
bootstrap to a different UNL that matches reality. During bootstrapping, signatures on ledger periods can be batched into one step in
order to sync to the latest state immediately.
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1. Access to assets and ecosystems that were not previously available through trustless representations of
non-Turing complete assets, as exemplified by FXRP [Net20].

2. The value of Spark as collateral or a usage medium.

3. The use of the Flare Time Series Oracle (FTSO), as described in section 4.

4. The depth of interest and expertise that could be brought to bear over governance questions.

5. The increased likelihood of attention for a new application from the Spark owning community against the
attention that application would have through bootstrapping from zero.

Collectively these can be termed the "network effects"3 of the SDA as the benefits increase with usage.

3.2.1 SDA components

The first component of the SDA is the usage of Spark as collateral for any application that requires collateralization.
Unlike the native tokens of smart contract platforms that use some form of Proof of Stake that incorporates slashing
[Ben], the use of the Spark token as collateral does not compete with network safety itself because Flare network
safety is not reliant on the token. Any application on the network can use the Spark token as collateral. The first such
application uses the Spark token to create a trustless 1:1 representation of XRP, FXRP [Net20].

The second component of the SDA is the Flare Time Series Oracle (see section 4), which provides a periodic on-chain
estimate of the current value of any number of off-chain time series. The contributors to a specific time series consists
at a minimum of Spark token holders but will under certain circumstances include the token holders of an application
that relies on that time series, called F-asset holders.

Definition 3.6. An F-asset is a token issued by an SDA that is permitted by Spark governance(see section 5) to
participate in the Flare Time Series Oracle over one or several data estimates.

An F-asset could take any form given consent via governance from the Spark token holders. Two such examples are
presented.

Example 3.1. One-to-one representation FXRP is a trustless representation of XRP on the Flare Network [Net20].
The FXRP application requires a price feed (data estimate) of the XRP/Spark price. FXRP is the F-asset relating to the
XRP/Spark price feed.

Example 3.2. One-to-many representation An example application enables the automated accrual and realization of
profits and losses, denominated in the Spark token, against peer to peer bets over a variety of different time series. The
time series are estimated by the Flare Time Series Oracle. The application has a governance token which determines
certain parameters internal to the application, such as collateralization, but is also the applications F-asset and contributes
to the Flare Time Series Oracle (FTSO) for the estimation of certain series used by the application. The design of
applications that use a one-to-many F-asset must be carefully considered so as to avoid providing incentive to attack
the FTSO. This is a key consideration of the Spark governance set when deciding to allow an applications proposed
F-asset to participate in the FTSO.

The Flare Time Series Oracle (FTSO) has a reward function which generates new Spark tokens. The new Spark tokens
are used to reward Spark holding contributors. The determination by which contributors are rewarded is based on a
process designed to economically incentivize honesty and is detailed in section 4. The total amount of the reward is the
inflation rate of the Spark token and is determined by governance. F-asset holders who contribute data are not directly
compensated by the FTSO. They may be incentivized to contribute because doing so provides greater surety over the
validity of the data and/or contribution rewards specified within the application itself.

The FTSO will initially provide data estimates for XRP/Spark, USD/Spark, BTC/Spark and XLM/Spark. Of those, the
token holders of the initial dependent application, FXRP [Net20], will contribute to the XRP/Spark price in addition to
the Spark holders. The FTSO is extendable to include additional time series, as detailed in section 5. All data produced
by the FTSO is freely usable by any application in the system. Thus any application can reformulate and augment the
data in anyway the designers see fit.

The third component of the SDA is the use of Spark for governance purposes. Spark is used in the governance of the
network and parameters around the Spark token. It can optionally be used by applications to involve a wider set of
participants in critical decision making. There are no set rules as to how Spark is used in the governance of an SDA or
for how long. FXRP is an example of an application that derives its governance from the Spark token which sets the
collateral ratio, fees and various other parameters. A full presentation of the governance system is detailed in section 5.

3https://en.wikipedia.org/wiki/Network_effect
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3.2.2 Mitigating a potential trade off

The three elements of the SDA structure deliver optimal utility only if they work together. Indeed, it is necessary that
there be no competition between using Spark as collateral and those same Spark tokens being used to contribute to the
FTSO or governance systems. An impediment to using Spark for all three elements simultaneously is generated by the
use of Spark as collateral. This is because it is locked in a smart contract so as to be available to compensate one or
many counterparties upon the determination of the application.

When Spark is locked in an application as collateral, the provider of that collateral still potentially has a claim on all or
part of it, which is enforced algorithmically by the smart contract. In most applications, that claim will be the original
collateral amount plus any additions less any losses and/or expenses. Usually the claim would correspond to the amount
that the collateral provider could extract from the system if they were to unwind their participation in the application.
This claim will likely be variable over time and is termed the Spark claim.

Definition 3.7. The Spark claim is the amount of Spark tokens that are realizable from an application by an address if
all participation in the application was unwound.

If there were no way for the address to use the Spark claim amount to contribute to the FTSO (and potentially earn the
FTSO reward) then the addresses owner faces an undesirable opportunity cost in deploying that Spark as collateral in
the application. A system of delegation is thus introduced to resolve this. Delegation allows an address to bestow all
or a fraction of the votes associated with its Spark tokens upon another address for the purposes of both FTSO and
governance participation without moving or transferring those tokens. Each Spark token holds one vote that can be
contributed to the FTSO and a separate vote that can be contributed to governance. These votes may be delegated to
different parties. The opportunity cost described above is then solved when any application that creates a Spark claim
automates delegation of the claim amount to an address specified by the collateral provider.

Definition 3.8. Delegation corresponds to an address on Flare assigning its own Spark token votes (or F-Asset votes)
and any votes already assigned to it, to another address on Flare.

Token owners are free to delegate and un-delegate their votes at any time. Delegation can be structured such that one
party can delegate to a second party and that second party can delegate to a third and so on. This leads naturally to the
notion of an addresses voting power, which is used both by the FTSO and the governance system.

Definition 3.9. The number of non-delegated tokens held by an address plus any tokens delegated to that address, that
are themselves not further delegated give the addresses voting power.

To summarise, applications that use Spark as collateral and allow delegation of Spark tokens do not impact the FTSO
or governance functions and usage of Spark as collateral does not undermine network safety. Spark holders can
simultaneously earn the FTSO return, return from any dependent tokens and continue to participate in governance.

Example 3.3. Flare XRP (FXRP) [Net20] is a representation of the XRP Ledger’s (XRPL) intrinsic token, XRP. FXRP
is backed by the Spark token and exchangeable 1:1 with XRP. The user does not need to trust a centralized party at
any step throughout the creation, usage and redemption of FXRP, hence FXRP is trustless. The Spark token provides
the collateral to underpin FXRP, hence it is only natural that the Spark token holders have a high level of governance
over the FXRP system parameters. Spark token holders exert governance over the FXRP system through voting on
system parameters that are encoded in smart contracts. An example of one such parameter is the FXRP collateral ratio.
This is the value of Spark tokens that must be locked against issued FXRP, which at the outset is set to 2.5. It is then
alterable via the proposal and governance process of Spark token holders and requires a super majority as defined in the
governance section (see section 5) (at least 50% of all token holders participate and the proposal wins a 2/3 majority).
The FXRP system requires a feed of the XRP/Spark price so that the value of collateral posted against issued FXRP
remains above the collateral ratio. The price feed is secured by making it a responsibility of the two stakeholders in the
FXRP system: the Spark and FXRP holders.

3.3 Spark creation and distribution

The Spark token will be distributed to the XRP ecosystem in what is intended to be a soft fork that generates considerable
utility for the original chain (XRP), by enabling the use of XRP with Turing complete smart contracts, instead of trying
to compete with it. A more apposite term for the process would be a utility fork.

3.3.1 Apportionment

A snapshot of the XRP Ledger will be taken at a specified date, detailed in section 3.3.2. At the inception of the Flare
Network 100Bn tokens will be created. 45Bn tokens will be claimable for 6 months by XRP token holders excluding
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known Ripple Labs accounts. The claim amount is calculated against XRP holdings at the time of the XRP Ledger
snapshot via the apportionment formula, see definition 3.10. At the end of the claim period, any unclaimed tokens will
be deleted. 25Bn tokens will go to Flare Networks Limited and 30Bn tokens will go to the Flare foundation. The Flare
foundation, see section 6, is a non profit organisation intended to help develop the Flare Network and facilitate network
governance.

Definition 3.10. XRP holders, bar Ripple labs, can claim Spark tokens according to the following apportionment
formula:

xSpark = xXRP/(N −NRipple) ∗ 45Bn, (2)

where xSpark is the amount of Spark claimable, xXRP is the amount of XRP held at the snapshot date, N is the total
amount of XRP in existence at the snapshot date, and NRipple is the total amount of XRP known to be held by Ripple
Labs at the snapshot date.

3.3.2 XRP snapshot date

Because many XRP tokens are held on exchanges, the XRP Ledger snapshot will be taken at a point in the future when
a sufficient number of exchanges have articulated to their clients whether they will claim the Spark token on their behalf.
An announcement will be made on https://flare.xyz when the snapshot has taken place. The delay to taking the
snapshot gives those XRP owners whose tokens are held in an exchange account but who wish to participate in the
Spark distribution the means to do so should their exchange not provide such an option. Known exchange accounts who
opt not to pass the Spark token on to their clients but still retain an XRP balance at the time of the snapshot will be
removed from the token distribution. Any tokens that would have been claimable by those accounts will be reallocated
pro-rata to valid claim holders.

4 Time series oracle

The Flare Time Series Oracle (FTSO) provides an estimate of information pertaining to the external world which is
required on-chain. For the system to rely on one (or) more external information sources in order to provide this estimate
would effectively introduce centralisation. By harnessing the decentralised nature of the network, estimates of a wide
range of time series data can be computed via a decentralised oracle. This leverages the peer-to-peer nature of the
network, whilst incentivising Spark users to contribute via the earning of rewards.

In the following, some background on decentralised oracles is first summarised in 4.1 and an overview of the FTSO
is presented in 4.2. Next, in 4.3 the process of computing the estimate is detailed, followed by a description of
the compensation scheme in 4.4 and of the pseudo-random number generator in 4.5. Finally, in 4.6, the FTSO’s
susceptibility to attacks by malicious parties is discussed.

4.1 Background

Decentralised oracles typically leverage the system participants in order to vote regarding the nature of a given
proposition. For instance, the Schelling Coin protocol [But14], uses a commit and reveal scheme, in order to gather
votes from network participants. This results in a distribution over the votes, of which the top and bottom 25% are
then truncated. The median of the resulting distribution is taken as the price estimate, and the 50% of voters whose
submissions were used are rewarded. Such schemes can be studied from a game theoretic perspective, whereby each
participant has to make a choice in order to maximise their reward. For instance, the Schelling Coin scheme hinges on
the idea that such a game has a Schelling point, i.e. a focal point [Sch80].

Over recent years, the need to query external information to the chain has sparked the development of various approaches
to oracles, such as TruthCoin consensus [Szt15], Chainlink [EJN17], Astraea [Adl+18] or Terra [KDKP19]. The core
feature of an oracle should be a decentralised data feed exploiting the distributed nature of the underlying system whilst
incentivizing players to be honest.

4.2 FTSO overview

The Flare time series oracle is a decentralized application that aims to generate accurate estimates of off-chain time
series data on the Flare Network. The oracle takes as inputs estimates from two sets of participants: Spark holders and
relevant F-asset holders. At regular and prescribed time intervals (a governance parameter), participants from both sets
may (but are not obligated to) submit to the system their current estimates.
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The resulting set of votes forms a distribution over the data estimates, termed the weighted estimate distribution, see
definition 4.5. In order to remove outliers, which likely consist of errors and attempts to be malicious, only the middle
50%, as determined by number of votes, is retained. This results in the updated truncated estimate distribution, see
definition 4.6. The weighted mean of the truncated distribution is then used as the value estimate for the next Ablocks
blocks, where Ablocks is a system parameter. Holders whose votes contributed to the final output are then compensated,
as described in the compensation scheme in definition 4.12.

4.3 Computing the estimate

The time series oracle yields an oracle estimate of a given variable. These are computed by processing estimates from
relevant token holders at regular time intervals, termed voting rounds. At the start of each voting round, relevant token
holders (as later defined) submit their data estimate, termed their vote, from which the oracle computes the oracle
estimate. The votes are submitted using a commit and reveal scheme [Gol07].
Definition 4.1. A voting round t is a time interval during which votes can be submitted. This is a system governance
parameter.
Definition 4.2. The vote vit at voting round t is the submitted estimate of the ith participating address.

Each oracle estimate is determined by two groups with competing interests: holders of Spark, and holders of the F-asset
tokens issued in relation to the relevant data estimate. For simplicity of notation, in the following, a single data estimate
is considered. The proposed procedure can then straightforwardly be extended to n different time series.
Example 4.1. The FXRP system [Net20] requires a robust estimate of the XRP/Spark price to ensure that sufficient
collateral is held against issued FXRP. In this case, the F-asset is FXRP, and the time series oracle provides the on-chain
XRP/Spark price, based on the estimates being submitted by both holders of Spark and FXRP. By virtue of holding
either FXRP or Spark, both these groups have an implicit stake in the system i.e. an incentive to act honestly, as accurate
pricing maintains the systems integrity and utility.

At each voting round t, let there be NS
t Spark addresses and NF

t F-asset addresses who wish to participate and submit
a vote. These are termed the partaking addresses, defined in 4.3. Let QS

t be the total amount of Spark voting power
on the NS

t participating Spark addresses, and let QF
t be the total amount of F-asset voting power on the NF

t F-asset
participating addresses in voting round t. Thus, the total number of partaking addresses is given by Nt = NS

t +NF
t .

Definition 4.3. For a given voting round t, partaking addresses consist of:
1. Spark addresses who choose to participate in round t,
2. F-asset addresses who choose to participate in round t.

Next, each account casts their vote i.e. submits their estimate. The number of tokens associated with the voting
addresses at the start of the voting round are considered. Say the voting power of address i is xSi if it is a Spark address,
and xFi F-asset if it is an F-asset address. If it is an F-asset address, the voting power is proportionally scaled by an

adjustment factor QS
t

QF
t

, resulting in the adjusted voting power, see definition 4.4.

Definition 4.4. The F-asset adjusted voting power is given by

x̃Fi =
QS

t

QF
t

· xFi , (3)

where QS
t , QF

t are the total amount of tokens held on Spark and F-asset partaking accounts at the start of round t, and
xFi is the voting power of the ith partaking F-asset address.

As the voting power of F-asset addresses are adjusted and scaled to the amount of assets held in voting Spark addresses,
the total amount of voting power Qt is given by Qt = 2QS

t .

Then, the submitted votes weighted by voting power (or adjusted voting power depending on address type) result in a
distribution over data estimates, termed the weighted estimate distribution Pt. Each vote cast is weighted by the amount
of tokens held as follows.
Definition 4.5. The weighted estimate distribution Pt for voting period t consists of a set of estimates {vi}Nt

i=1, and an
associated set of weights {wi}Nt

i=1, where

wi =

{
xSi /Qt, if i is a Spark address,
x̃Fi /Qt if i is an F-asset address.

(4)

where Qt = 2QS
t and where furthermore

∑Nt

i=1 wi = 1
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Next, the distribution is truncated by computing 0.25Qt, and deleting the lowest and highest such votes i.e. 50% of
the submitted votes are retained. This results in the truncated distribution P ′

t over a new set of prices i.e. a same or
smaller set. Indeed, if address i initially had xi tokens, then all, some or none of these may be deleted after truncation.
Thus, address i is now left with x′i token votes. Thus, x

′S
i and x̃

′F
i correspond to respectively Spark and F-asset votes

remaining after truncation.

Definition 4.6. The truncated estimate distribution P ′
t for voting period t consists of a set of estimates {vi}

N ′
t

i=1, where
N ′

t ≤ Nt, and an associated set of weights {w′
i}

N ′
t

i=1, computed from where x
′S
i and x̃

′F
i , which are the surviving votes

of respectively Spark and F-asset account holders.

Finally, the output of the oracle can be computed by taking the weighted mean of the resulting distribution.
Definition 4.7. The oracle estimate is the computed estimate at voting round t based on partaking votes. It is computed
by taking the weighted mean of the truncated estimate distribution P ′

t and is denoted mt.

The following two examples illustrate how the oracle estimates are computed. For simplicity sake, these consider the
case where all partaking accounts are Spark accounts.
Example 4.2. Alice, Bob, Charlie and Eve hold respectively 10, 20, 30 and 20 Spark tokens, and decide to participate
in round t of price voting. They are the only four participants who choose to vote. In terms of weighted holdings, this
results in a total of 10+20+30+20=80 votes. Alice submits a vote for 3, Bob for 4, Charlie for 5 and Eve for 6, which
results in a distribution over prices Pt. Next, the top 25% and lower 25% of votes are discarded i.e. the top 20 and
lower 20 votes are removed. The resulting distribution P ′

t is now 10 votes for price 4 from Bob and 30 votes for price 5
from Charlie. The weighted mean of this distribution is m = 10

40 · 4 +
30
40 · 5 i.e. m = 4.75, which is the oracle output.

Example 4.3. Alice, Bob and Charlie hold respectively 100, 50 and 100 Spark tokens, and decide to participate in a
round of price voting. They are the only three participants who choose to vote. In terms of weighted holdings, this
results in a total of 100+50+100=250 votes. Alice submits a vote for 2, Bob for 3 and Charlie for 4, which results in a
distribution over prices Pt. Next, the top 25% and lower 25% of votes are discarded i.e. the top 62.5 and lower 62.5
votes are removed. The resulting distribution P ′

t is now 37.5 votes for price 2 from Alice, 50 votes for price 3 from Bob
and 37.5 votes for price 4 from Charlie i.e a total of 125 votes have survived truncation. The weighted mean of this
distribution is m = 37.5

125 · 2 +
50
125 · 3 +

37.5
125 · 4 i.e. m = 3.0, which is the oracle output.

More generally, if there are n estimates to compute, Spark addresses who choose to vote will no longer submit a single
vote per round, but a list of n votes v = (v1, . . . , vn). This will result in n estimate distributions, which will then each
be truncated, resulting in n truncated distributions. The weighted means mi for i = 1, . . . , n of the resulting truncated
distributions are then computed, resulting in n oracle estimates m = (m1, . . . ,mn).
Definition 4.8. The Flare time series oracle (FTSO) provides data estimates as follows. In a given voting round t:
1. Partaking addresses submit their data estimate,
2. A weighted estimate distribution Pt is generated,
3. The top 25% and bottom 25% of this distribution is truncated, resulting in an updated distribution P ′

t,
4. The weighted mean m of the resulting truncated distribution is outputted, called the oracle estimate,
5. Holders whose estimates remain in the set are remunerated, as per compensation scheme 4.12,

4.4 Compensation

Spark holders that submitted an estimate that remained in the distribution after truncation are compensated. The
precise amount of Spark tokens minted for reward is a network governance parameter, which is initially set at 10% of
Spark tokens in circulation per annum, and is termed the award rate, see definition 4.9. The Spark token holders can
subsequently vote in order to change this, as set out in section 5. Note that although F-asset holders can participate, they
do not get compensated. Instead, F-asset holders are incentivized to vote to ensure the integrity of the data related to the
F-asset.
Definition 4.9. The award rate rA is the annual amount of Spark tokens minted as a percentage of Spark tokens in
circulation at the beginning of the year to be awarded to successful votes i.e. votes surviving truncation. It is by default
set to 10%.

The total minted tokens for compensation per year is then broken down over the number of voting rounds over the year,
which is also a governance parameter. This determines the award a Spark holder can hope to earn for each voting round.
Definition 4.10. The voting rounds per year k is the number of voting rounds that occur in one calendar year.
Definition 4.11. The award per period A is the award available for a given voting round, and which is determined as
follows: A = rA · ST

tot/k, where ST
tot is the total amount of Spark in circulation in year T and where k is the number of

voting rounds per year.
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Example 4.4. Say there are 1440 Spark in circulation in year 1 i.e. S1
tot = 1440. At a default award per annum rate of

10%, 144Spark is minted for compensation. For k = 12, voting takes place on a monthly basis (note that in practice, it
will be far more frequent). Then, every month 12Spark are available for compensation.

If n oracle estimates are computed at round t, then only one of these is rewarded. In order to determine which, a
pseudo-random number between 1 and n inclusive is drawn, via the on-chain pseudo-random number generator, see
section 4.5. Say the pseudo-random number drawn is k, with 1 ≤ k ≤ n. Then, the addresses whose votes have survived
truncation for the kth distribution and thus contributed to the computation of the kth oracle estimate are rewarded. Each
address i whose vote contributed to the kth oracle estimate is rewarded a compensation amount ai, computed as per
definition 4.12. Thus, each voting round, a new oracle estimate will be rewarded, providing an incentive for participants
to vote across all prices.

Definition 4.12. The award is the amount of Spark a Spark holder receives if their vote contributed to the oracle
estimate i.e. survived truncation, and is computed as follows. Let N

′S
t be the number of Spark addresses which survived

truncation. The award for Spark address i is given by

ai = A · x
′S
i /x

S
i∑N

′S
t

j=1 x
′S
j /x

S
j

, (5)

for i = 1, . . . , N
′S
t .

Example 4.5. Following example 4.4, say an amount 12 Spark is up for compensation. In example 4.2, Bob and
Charlie have survived the truncation, and will thus be compensated for their participation. From Bob’s votes, 50%
contributed to the final distributed, and 100% of Charlie’s contributed. Thus, Bob will obtain 1/3rd of the amount up for
compensation and Charlie 2/3rds, i.e. 4 and 8 Spark respectively.

Example 4.6. Following example 4.4,say an amount 12 Spark is up for compensation. In example 4.3, Alice, Bob
and Charlie have survived the truncation, and will thus be compensated for their participation. First, the proportion
of surviving votes is computed. For both Alice and Charlie, this is 37.5/100=0.375 whereas for Bob this is 50/50=1.
Computing the weights for each yields 0.375/(0.375+ 1+ 0.375) = 0.375/1.75 for Alice and Charlie, and 1/1.75 for
Bob. This results in compensation of 2.57 Spark for Alice and ‘Charlie, and 6.86Spark for Bob.

An important consideration is that sufficient number Spark addresses could wish to increase their chance of obtaining the
reward by corrupting the system through the creation of dummy time series and related F-assets which are added to the
FTSO. In turn, this could undermine the economic incentive for partaking addresses to provide honest estimates to the
FTSO. In order to counteract this, when the number of F-assets on Flare is greater than one, a value threshold Qthreshold

for each F-asset is imposed. If QF
t ≥ Qthreshold, then the compensation scheme proceeds as previously described. But,

if QF
t < Qthreshold, F-assets retain the ability to contribute data to the time series that relate to them, however their votes

are no longer included in the calculation of the award. More specifically, for each F-asset which is below threshold, the
weighted estimate distribution Pt is re-computed with x̃Fi = 0 for all partaking addresses i associated with the F-asset
F . From this, the truncated distribution is re-computed and the award is computed for this truncated distribution.

4.5 Accessing pseudo-randomness on-chain

At each voting round, the compensation scheme requires access to a random number between 1 and n. Accessing
randomness on-chain whilst not introducing an element of centralisation is an active area of blockchain research and
development [EJN17; Gil+17]. In order to choose the data feed to reward, the Flare time series oracle relies on the
on-chain pseudo-random number generator, see definition 4.13, and proceeds as follows.

At each voting round t, partaking accounts must submit a random number between 1 and n inclusive alongside their
vote. This number is denoted yit, where i = 1, . . . , Nt. Next, these are added together resulting in a number Yt. For n
data feeds, this means NS

t + n ·
∑n

i=1N
Fi
t ≤ Yt ≤ n(NS

t + n ·
∑n

i=1N
Fi
t ), where the lower bound corresponds to

the case where each account submits a 1, and the upper bound, n. Next, the hash function SHA-256 is applied to Yt, the
output of which is a 256-bit string, i.e. a number between 0 and 2256. Next, this is taken modulo n, and a 1 is added to
the result, in order to obtain an integer between 1 and n inclusive. This, is the output of the on-chain pseudo-random
number generator, summarised in 4.13.

Definition 4.13. Each round t, the the on-chain pseudo-random number generator takes as input a random integer yit
from each partaking account i in voting round t and computes the following:
1. The sum of all the submitted random numbers Yt =

∑Nt

i=1 y
i
t, for i = 1, . . . , Nt,

2. The output is given by Nt = 1+SHA256(Yt) mod n.
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The on-chain pseudo-random number generator relies on both Spark and F-asset holders to submit a random number.
Note that it is not possible for the network to ascertain whether a given submitted value is indeed random or not.
Instead, the system relies on the participants to be incentivised to submit a random number as requested. For Spark
holders, the incentive is to obtain the reward and thus increase their Spark holdings. If they believe the outcome is
indeed random, then this incentivizes them to submit what they believe are true prices for all n data estimates, as this
maximises their chance of surviving distribution truncation. In contrast, for F-asset holders, the incentive is to ensure
the FTSO functions correctly i.e. that the participants submit honest votes regarding their estimates.

4.6 Susceptibility to attacks

The FTSO builds on ideas introduced in the Schelling Coin [But14], which is susceptible to the P + ε attack [But15].
The FTSO differs to the Schelling Coin in that it introduces implicit stake in the form of Spark and any contributing
F-asset and where each series is formed by at least two sets of participants with differing incentives. In the following, a
discussion regarding the FTSO’s susceptibility to the P + ε attack is presented. A quantitative analysis of all known
attacks will be released separately together with any updates required to the FTSO structure.

The P + ε [But15] attack can be briefly characterised as follows. In a binary outcome process, a participant votes 1
or 0 according to what they believe the majority will vote, in order to earn a reward P . Each participant has one vote
and there are no restrictions on who the participants are. The attacker commits to paying out P + ε to those who vote
1 when the majority vote 0, where ε is some marginal amount. This skews the economic benefit for all participants
to vote 1, regardless of the truth. Hence the majority of participants vote 1 and the attacker does not need to pay out.
Pricing mechanisms such as Schelling Coin are susceptible to the P + ε attack as these hinge on how the majority
of participants in the system will vote. In contrast, the FTSO weighs votes with token holdings. This means that the
outcome of the vote is not dependent on the majority of participants, but instead on the majority of stake. This means
that in order to corrupt the system, holders of a stake majority should vote a given way.

More specifically, the P + ε hinges on the fact that each participant has a single vote i.e. the votes are effectively
uniformly distributed across participants. Thus an attacker has to credibly demonstrate they have the capital to corrupt
strictly more than 50% of participants. To translate this to Flare, each address would have 1 token giving it a voting
power of 1 which cannot be delegated. A participant would also be limited to having a single address. So if there
are 100 participants an attacker could only have a chance of success if they demonstrated sufficient capital to pay out
P + ε to 51 participants. However, on Flare each token equals a vote and tokens are not uniformly distributed across
participants. Translated to Flare, the P + ε attack would require an attacker to convince the holders of a majority of
tokens to engage in the attack. This results in a situation for the attacker where the minimum economic commitment
they must demonstrate for a successful attack must account for more than 50% of the tokens. However the minimum
set of participants on Flare that own strictly more than 50% of the tokens could likely own some quantity reasonably
greater than just over 50%. This minimum set of participants would not accept compensation on only a partial amount
of their holdings so the entirety of the token holdings of that minimum set would need to be compensated. Thus the
attacker would at least need to demonstrate a credible commitment an amount of capital that may be far greater than
under the P + ε analysis.

A second consideration it that the P + ε requires the majority of participants to not be altruistic. For Flare, a scenario
whereby a minority of participants could be altruistic but still own a majority of tokens could occur. This in turn would
make such an attack impossible.

Third, given the unknown token ownership distribution at any point in the future, it cannot therefore be automatically
assumed, as it is in P + ε, that an attacker will successfully attack some future round of voting, the effects of which
backpropagate to the current round.

Finally, in order to vote a participant must own a Spark token or an F-asset. Hence every vote has a value which is
represented by each token. The value of Spark is partially derived from the FTSO. The value of an F-asset is linked to
both the oracle, through the time series in the application linked to the F-asset, and the value of Spark. Hence if the
oracle loses utility through providing inaccurate estimates, the loss to both Spark token and F-asset holders will be
considerable. So to replicate the incentive structure detailed in the P + ε attack to Spark holders, the attacker would
have to offer at a minimum the value of P + ε before the attack plus the Spark loss value. Similarly to replicate the
attack structure for an F-asset holder, the attacker would have to offer at a minimum the value of the F-asset loss.

Such a reward would only be credible if the attacker displayed an amount of capital committed to the attack that is the
sum of the attack incentives for a sufficient amount of oracle participants, which for each time series must be more
strictly than 50% of the scaled votes . Assuming economic rationality, this commitment could only occur if there was
some economic mechanism by which the attacker could benefit in a way whereby for each unit value drop in Spark and
the specified F-asset the attacker made more than one unit of value plus P + ε and this mechanism is available to the
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attacker at a scale to cover a proportion of holdings of participants that would be very large. Any counter-party or set of
counter-parties offering such a mechanism to the attacker would themselves need to be economically irrational and
hence the attack is highly improbable.

5 Governance

The Spark token is used as the primary governance mechanism over the Flare Network, the Spark token and the Flare
Time Series Oracle (FTSO). These elements are detailed in what is set out below. Spark can also be optionally used for
governance over dependant applications. This is determined by the application itself and is not relevant to this paper.

Certain updates from governance decisions can be automated, termed automated processes, whereas others, the non-
automated processes can not. The latter typically require a more complex procedure, requiring for instance changes to
the codebase. Automated processes that relate to a variable which can take a range of values are designed to increment
slowly so as to avoid shocks to the system. An emergency automated process is defined for situations where there is
general consensus amongst Spark owners that the variable under consideration needs to be altered rapidly.

Table 1 shows governance parameters on the Flare network. Decisions are categorized into whether they relate to the
network and its technical parameters, the Spark token or the Flare Time Series Oracle.

Network Spark FTSO

Complexity limit Spark to Gas unit conversion FTSO reward rate
Consensus parameter I Additional Spark distributions F-asset value threshold

UNL parameter n Oracle update frequency, T
Network code changes Oracle voting period, t

Oracle methodology update
F-asset inclusion

Change oracle series composition

Table 1: Governance parameters on the Flare Network. Decisions that can be automated are shown in black whereas
decisions that require a code change, and are thus termed non-automated, are shown in blue.

5.1 Decision categories

Governance decisions are made through voting using the Spark token. Each Spark token equals one vote. Because
different decisions have different impacts on the network, three decision rules are specified: simple majority (defi-
nition 5.1), super majority (definition 5.2) and super super majority (definition 5.3). Each of these places specific
requirements on the number of Spark tokens participating in the voting process, as well as the number of votes for
a proposition to pass. The Spark tokens held by the Flare Foundation (section 6) may not be used to vote and are
considered not to exist for the purpose of governance.

Definition 5.1. For a simple majority decision, a proposition is confirmed if strictly more than 50% of votes cast are in
favor of it and there is a minimum turnout of 30% of total Spark tokens.

Definition 5.2. For a super majority decision, a proposition is confirmed if strictly more than 2/3rd of votes cast are in
favor of it and there is a minimum turnout of 50% of total Spark tokens.

Definition 5.3. For a super super majority decision, a proposition is confirmed if strictly more than 80% of Spark
tokens vote in favor of it and there is a minimum turnout of 70% of total Spark tokens.

Decisions fall into categories that are predefined prior to network instantiation. The category itself can be changed via
the non-automated governance process.

Table 2 shows governance decision categories for various system parameters.
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Simple Majority Super Majority Super Super Majority

Transaction cost parameters Consensus parameter I & n Additional Spark distributions
Oracle composition F-asset inclusion Oracle methodology update

F-asset value threshold Other network code changes
FTSO reward rate

Oracle update frequency, T
Oracle voting period, t

Table 2: Decision Categories Governance decisions fall into one of three categories, depending on the various impacts
these can have on the network.

5.2 Direct and delegated voting

Flare will follow a liquid democracy4 model whereby token holders are free to vote themselves or to delegate some or
all of their tokens (votes) to another entity which votes on their behalf, as defined in 3.8. A voting entity that amasses
delegated votes can be formed by any one or collection of people. One of those entities will be the Flare Foundation.

5.3 Voting considerations

The following sections cover governance voting over automated variables and more complex decisions which require
code updates. Voting is based on an addresses voting power, as defined in 3.9. To avoid an attack on governance
whereby tokens are shuttled from one address to another during the voting period, Flare restricts an address’s voting
power to its voting power at the beginning of any voting period.
Definition 5.4. The governance voting period TG is the number of blocks over which voting takes place.

The voting power of an address for the purpose of governance is then the voting power of the address in the first block
of TG.

5.3.1 Automated Process

For variables which can be updated automatically, initial parameters will be set at the instantiation of the network.
Variables that can be automated are either binary or can take values that are a finite subset of the real numbers.
Definition 5.5. An automated variable is either binary or takes on one of a finite set of values. It is set through network
consensus.

For non binary automated variables, reaching agreement on both direction and magnitude of a change could be complex.
Therefore, for such a variable, a preset increment is set such that the governance decision is over whether to increment
the variable in a particular direction, and not in the size of the step. This is initially set by the variable creator, but can
itself be governed in an automated fashion.
Definition 5.6. A variable increment is a predefined incremental increase or decrease, relating to a specific automated
variable.

For any automated variable, a minimum preset threshold of interest to increase or decrease the variable (or switch state
if binary) must be reached to trigger a network wide governance vote. A governance vote is the process that decides on
the change in a variable.
Definition 5.7. A governance vote trigger is a smart contract associated with each automated variable, and which runs
as follows:
1. The smart contract accepts votes over a voting period TG.
2. Each Spark address can place a vote, up to its voting power in the first block of TG, for the variable to either change
(binary) or decrease/increase (by the predefined increment).
3. If at any point during the voting period, the sum of the votes in a particular direction exceed the preset threshold,
then a network wide governance vote takes place, as defined in 5.8.
4. If at the end of TG an insufficient amount of votes are accumulated to lead to a governance vote, the governance vote
trigger is reset and reinstated.

4https://en.wikipedia.org/wiki/Liquid_democracy
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Definition 5.8. The governance vote is a network wide vote that takes place if a governance vote is triggered, and
proceeds as follows:
1. The governance vote trigger system for that specific variable is suspended for the duration of the governance vote, as
defined by the number of blocks TG.
2. The vote trigger outcome (i.e. to change state or increase/decrease the variable value) becomes the proposition for
the governance vote over the specified variable.
3. The votes for the proposition accumulated in the governance trigger are automatically set in favor of the proposition.
4. Additional votes are accumulated during TG using each addresses voting power from the first block of TG.
5. If at any point during the voting period the sum of the votes exceeds the minimum defined by the preset decision
category, the variable is incremented by the predefined amount in the direction specified by the proposition.
6. If at the end of TG an insufficient amount of votes are accumulated to lead to a change in the variable the governance
vote trigger is reset and reinstated.

5.3.2 Emergency automated governance

The automated governance process is purposefully designed to iterate through values slowly so that the system and
participants have time to adjust and arrange their affairs accordingly. In certain cases however it may be necessary to
make larger adjustments quickly.

During each governance trigger voting period TG, any address with voting power may enter a proposed numeric value
that is at least n+ 2 variable increments away from the current value, where n is an integer and governance parameter.
This creates an additional governance trigger proposal that remains for the duration of the current voting period against
which voting power can be expressed. The same rules as set out in 5.7 are applied. If sufficient votes are amassed, then
a network wide governance vote is held over this value. Otherwise, the new governance trigger is deleted at the end of
the current governance trigger vote period. Multiple additional governance triggers may be proposed provided they are
at least n variable increments away from each other.
Definition 5.9. The Emergency governance vote trigger is a process which runs as follows:
For a specific variable that can be changed by automated governance and referring to that variables governance trigger:
1. If during a period TG, an address with voting power sends a transaction to the governance trigger contract, containing
a suggested numerical value for that variable and that numerical value is at least n+ 2 variable increments away from
the current value or n variable increments away from any other proposed value, then:
2. An additional voting proposition is created within the governance trigger contracts that sets the suggested numerical
value as a new proposition which can accumulate votes.
3. As per the governance trigger process each Spark address can place a vote, up to its voting power in the first block of
TG, for the variable to either change (binary), decrease/increase (by the predefined increment) or for any additional
voting proposition.
4. If at any point during the voting period, the sum of the votes for any proposition exceeds the preset threshold, then a
network wide governance vote takes place for that proposition, as defined in definition 5.8.
5. If, at the end of TG, an insufficient amount of votes are accumulated to lead to a governance vote, the governance
vote trigger is reset, any additional propositions are deleted and the governance vote trigger restarted.

5.3.3 Non-automated process

Implementing governance decisions that require a codebase change follows a non-automated process, where defi-
nition 5.10 specifies the sequence of steps taken for such a change, from inception to implementation. The set of
decisions that such a process encompasses is broad. For example, this would include decisions such as updating the set
of dependent applications in order to add or remove an application. This, in turn, may require an addition or subtraction
of a price feed at the FTSO or an issuance of tokens via a secondary utility fork.
Definition 5.10. A non-automated process proceeds as follows:
1. A proposal submission, whereby a proposal is submitted via a form hosted at https://flare.foundation.
2. The submitter will receive a unique code from the Flare website which must then be submitted to a smart contract on
Flare.
3. The smart contract now sets a new variable (the identifier) against which voting power can be accumulated and a
block by which to define a freeze of voting power.
4. Once the foundation observes that the transaction has occurred, the proposal is published on the website in order to
be publicly accessible and viewed.
5. Additional votes for a proposal are submitted by transacting with the smart contract using the proposal identifier.
6. The voting period for the proposal is approximately 3 months after which the variable is terminated.
7. A foundation analysis trigger, the foundation will initiate analysis on any proposal which reaches 50% of all voting
power.
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8. A foundation report is an analysis on a proposal compiled by the Flare foundation, complete with findings and
a recommendation. Foundation may reject the proposal and end the process for the following reasons: legality, the
proposal if successful would exceed foundation resource management constraints, technical in-feasibility, network
safety parameters.
9. A first hurdle, as per table 2 any proposal must accumulate voting power exceeding its decision category within its
voting period.
10. If the proposal relates to updating the FTSO composition, F-Asset list and/or related time series, network parameter
I or network parameter n, this will be the only vote and the changes will be directly implemented*.
11. A build and test, whereby if the proposal requires code changes, these will be implemented and tested on the Coston
test network.
12. A second report is compiled by the foundation, whereby the foundation issues its recommendations for any proposal
that requires a second vote.
13. An implementation vote. The foundation second report contains an identifier against which a second round of voting
takes place. This round is always decided by a simple majority decision.

Certain non-automated decisions can be implemented by augmenting smart contracts or adopting new sets of smart
contracts. Other decisions however require node operators to adopt a new version of the Flare Network code distribution.
It must be noted that nodes cannot be forced to run a new code distribution. The purpose of the non-automated
methodology is to sort for potentially beneficial updates, involve the technical expertise of the Flare foundation to
advise or build the update where applicable, utilize Coston as a testbed for those potential updates and then through
voting show a weight of Spark tokens behind those updates. This weight of Spark tokens is then likely to incentivize
nodes to adopt the update.

5.4 SDA interaction with Spark governance

An SDA interacts with Spark governance in a number of defined ways.

An SDA or potential SDA that wishes to add a data stream to the FTSO will use the non-automated governance process
to propose the addition which may or may not be successful. An SDA or potential SDA can use Spark token holders as
their governance set in whole or in part for any duration without the consent of the collection of Spark token holders.
The participation of Spark token holders is entirely optional.

6 Flare foundation

This section is intended as a brief overview of the Flare foundation. A complete constitution will be released separately.

The Flare foundation is to be a non-profit organization whose mandate is to participate in developing and improving the
network. The foundation will undertake this in five ways: grants, investments, direct software development, education
content and publicity & partnerships.

6.1 Guiding philosophy.

If operating correctly, the foundation should be a rallying point for the ecosystem to communicate, innovate and
further develop. It should not have excessive power in the network, nor should it interrupt or distort any of the
economic processes that operate on the network. To that end the foundation is bound by a set of rules, as formulated in
definition 6.1.
Definition 6.1. The foundation rules consist of the following five rules:
1. No voting,
2. No collateral,
3. No oracle participation,
4. The right to dissolve,
5. Reporting.

No voting. The Flare foundation is intended to help enact the collective will of the network. Its role in the governance
process is to give opinions and technical analysis over proposals and help implement accepted proposals. The foundation
may not use its token holdings to vote at any stage in the governance process.

No collateral. Foundation tokens will not be used to collateralize dependent tokens. Indeed, the supply and demand for
collateral in dependent tokens, such as the FXRP system, would be distorted were the foundation to deploy its collateral
into these applications.
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No oracle participation. It is desirable that over time the foundation reduces in importance relative to other participants.
The large initial token holding, combined with sensible financial management, should suffice, provided the network
gains traction, to make sure that the Foundation is capable of discharging its mandate for a sufficiently long period such
that at the end of the period the foundation is no longer needed. Hence, the foundation will not participate in the FTSO.
In effect the FTSO award rate then becomes a measure of the speed with which the foundation’s percentage ownership
decreases relative to the collective ownership of other participants. Note this does not mean that the foundations net
worth will necessarily reduce in parallel as the Spark token value may change and/or investments using the Spark token
could yield positive returns.

The right to dissolve. The network has the right to dissolve the foundation if desired. This is achieved by enshrining in
the bylaws of the foundation legal structure a stipulation that it must be disbanded if the network votes to do so. It is
highly likely that upon such a vote it would be impractical or impossible for the foundation to dissolve immediately,
however the foundation will submit a plan within 60 days to wind down operations, liquidate assets and burn its
remaining token holdings. Any non Spark assets will be used to purchase Spark tokens which will then be burned.

Reporting. Transparency is key. The foundation will issue a report every six months detailing the following: sales of
Spark tokens, employee remuneration, expenses and other use of funds, investments and grants.

953fbdd4ac2d5a2f1e413cbd378be0f3135010d81b4b643c6020e96ca49fc0c9
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Appendix A: Encoding the UNL Within the Smart Contract Layer

When a UNL definition is accessed in the smart contract layer by the claim-period finality system for use in computing
consensus on the state of an external system, the UNL leveraged should match each node operator’s UNL that they use
for network-level consensus. This is challenging however because the smart contract layer requires uniform execution
and resulting state between nodes that are consistent, meaning that there is no obvious way to encode a unique definition
of the UNL within the smart contract layer that controls the finality of the claim-period system across different nodes
that are consistent.

In the remainder of this section, we present a novel solution to enable the encoding of unique UNL definitions within
the smart contract layer for use in controlling contracts such as the claim-period finality system. We then discuss the
engineering considerations in using the approach.

Indexing Into an Array of UNL Definitions Using Custom Values for coinbase Per Node

In leader-based networks such as Bitcoin, a single node operator controls the definition of each block. Per block, this
node operator is selected to be in control based on for example solving a proof-of-work challenge or being selected by a
pseudorandom algorithm according to how much stake they own in a proof-of-stake network. Within such networks,
the leader node’s beneficiary address used for rewarding them for being in control of a block is denoted using a field
encoded into the block called the coinbase address. The coinbase field is disused within the Flare Network because
it is a leaderless network and also because consensus safety does not rely on economic incentives. However, the
Flare Network leverages a smart contract layer that still provides access to the coinbase field, as the smart contract
layer is built to be flexible in accommodating many different consensus topologies including leader-based, leaderless,
economically incentivised and non-incentivised. Therefore, because the coinbase field is invariant to the network-level
consensus of the Flare Network, each node operator can set the coinbase field locally to their own address. This
means that during smart contract execution on each local node, the coinbase field returns the executing node’s address
whenever it is referenced in smart contract execution.

For the purpose of computing the finality of a claim-period, the unique values of coinbase are used to index into an
array of UNL definitions within the smart contract layer. At runtime execution then, the code for computing the finality
of a claim-period will reach a line that calls for indexing into the UNL array using the coinbase address. This address
will be different on each different node operator, and when run on their machine will index into that node operator’s
UNL definition.

Engineering Considerations for the Approach

There are two engineering considerations to consider however when leveraging unique values of coinbase per each
node operator: 1) transaction costs should be constant-valued for contracts that leverage the unique coinbase values
and 2) the unique values of coinbase should only be leveraged in governance-approved contracts such as the state-
connector finality system. The reasoning for the first engineering consideration is that transaction gas costs do not
only depend on the number of computational steps, but also on the data values involved in the computations; that is,
unique values of coinbase would incur different gas costs during computation execution. The reasoning for the second
engineering consideration is that unique values of coinbase could be erroneously leveraged in bespoke smart contracts
to intentionally cause inconsistencies between node state. The state-connector finality system leverages the unique
values of coinbase in a specific and safe way that prevents inconsistencies between node state while achieving the
UNL consensus functionality required by the state-connector finality system.
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